首页 | 本学科首页   官方微博 | 高级检索  
     


The cytonuclear effects of facultative apomixis. II. Definitions and dynamics of disequilibria in tetraploid populations
Authors:Overath R D  Asmussen M A
Affiliation:Department of Genetics, University of Georgia, Athens, Georgia 30602, USA.
Abstract:We develop a cytonuclear framework for tetraploid populations in which a diallelic nuclear marker exhibits tetrasomic inheritance. This system requires two separate parameterizations, with six cytonuclear disequilibria (nonrandom associations) in tetraploid individuals and four in their diploid gametes. Double reduction during meiosis adds further complexity by causing gametic output to vary with the distance of the nuclear locus from the centromere. We derive and analyze dynamical solutions for the disequilibria under generalized mixed mating, with any combination of apomixis, selfing, and outcrossing, with and without double reduction. As in comparable diploid systems, all disequilibria ultimately decay to zero, unless nuclear and cytoplasmic alleles are nonrandomly associated and outcrossing is absent, in which case permanent associations result. Selfing and apomixis retard the decay of disequilibria (or approach to equilibrium), and often to the same extent. In contrast, double reduction can accelerate the loss of tetraploid cytonuclear associations, but only negligibly in hybrid zones, and this loss is never faster than in diploids. Only in the absence of allelic associations or outcrossing is the asymptotic approach to equilibrium differentially affected by apomixis and selfing or slower under tetrasomic than disomic inheritance. To facilitate empirical applications, we also examine tetraploid hybrid zone dynamics and offer practical guidelines for experimental design and data analysis, showing how the consequences of the mating system alone provide a valuable baseline for drawing evolutionary inferences from the observed patterns of cytonuclear associations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号