首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori
Authors:Wang Ge  Conover Richard C  Olczak Adriana A  Alamuri Praveen  Johnson Michael K  Maier Robert J
Institution:  a Department of Microbiology, University of Georgia, Athens, GA, USA b Department of Chemistry, University of Georgia, Athens, GA, USA
Abstract:Iron, a key element in Fenton chemistry, causes oxygen-related toxicity to cells of most living organisms. Helicobacter pylori is a microaerophilic bacterium that infects human gastric mucosa and causes a series of gastric diseases. Exposure of H. pylori cells to air for 2 h elevated the level of free iron by about 4-fold as measured by electron paramagnetic resonance spectroscopy. H. pylori cells accumulated more free iron as they approached stationary phase growth, and they concomitantly suffered more DNA damage as indicated by DNA fragmentation analysis. Relationships between the intracellular free iron level, specific oxidative stress enzymes, and DNA damage were identified, and new roles for three oxidative stress-combating enzymes in H. pylori are proposed. Mutant cells defective in either catalase (KatA), in superoxide dismutase (SodB) or in alkyl hydroperoxide reductase (AhpC) were more sensitive to oxidative stress conditions; and they accumulated more free (toxic) iron; and they suffered more DNA fragmentation compared to wild type cells. A significant proportion of cells of sodB, ahpC, or katA mutant strains developed into the stress-induced coccoid form or lysed; they also contained significantly higher amounts of 8-oxo-guanine associated with their DNA, compared to wild type cells.
Keywords:Oxidative stress  iron-promoted DNA damage  Helicobacter  superoxide dismutase  alkyl hydroperoxide reductase
本文献已被 InformaWorld PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号