首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alteration in sphingolipid metabolism: bioassays for fumonisin- and ISP-I-like activity in tissues, cells and other matrices
Authors:Riley R T  Norred W P  Wang E  Merrill A H
Institution:Toxicology and Mycotoxin Research Unit, USDA-ARS, Athens, Georgia 30604-5677, USA. rriley@ars.usda.gov
Abstract:The first discovered naturally occurring inhibitor of de novo sphingolipid biosynthesis was fumonisin B1. There are now 11 identified fungal inhibitors of ceramide synthase or 'fumonisin B1-like' compounds. With the exception of the australifungins, all other fungal ceramide synthase inhibitors are structurally sphingoid-like. There are several recently discovered fungal inhibitors of another enzyme in the de novo sphingolipid biosynthesis pathway: serine palmitoyltransferase (SPT). One of the SPT inhibitors is named ISP-I. While ceramide synthase inhibitors are toxic to animals, plants and fungi, the SPT inhibitors are not known to cause animal or plant disease, but are potent inhibitors of fungal growth. Very little is known about their toxicity in animals. There are at least 24 fungal SPT inhibitors produced by a variety of fungi. Given that the fungal inhibitors of sphingolipid biosynthesis are chemically and biologically diverse, two bioassays have been developed to screen for fumonisin-like or ISP-I-like activity in naturally contaminated products or fungal culture materials. These bioassays are based on the changes in free sphingoid base concentration that occur when the ceramide synthase or SPT are inhibited. The bioassays have the advantage that they are functionally rather than chemically specific and thus will detect ceramide synthase and SPT inhibitors regardless of their chemical structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号