首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative protein structure modeling by iterative alignment,model building and model assessment
Authors:John Bino  Sali Andrej
Institution:Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, The Rockefeller University, New York, NY 10021, USA.
Abstract:Comparative or homology protein structure modeling is severely limited by errors in the alignment of a modeled sequence with related proteins of known three-dimensional structure. To ameliorate this problem, we have developed an automated method that optimizes both the alignment and the model implied by it. This task is achieved by a genetic algorithm protocol that starts with a set of initial alignments and then iterates through re-alignment, model building and model assessment to optimize a model assessment score. During this iterative process: (i) new alignments are constructed by application of a number of operators, such as alignment mutations and cross-overs; (ii) comparative models corresponding to these alignments are built by satisfaction of spatial restraints, as implemented in our program MODELLER; (iii) the models are assessed by a variety of criteria, partly depending on an atomic statistical potential. When testing the procedure on a very difficult set of 19 modeling targets sharing only 4–27% sequence identity with their template structures, the average final alignment accuracy increased from 37 to 45% relative to the initial alignment (the alignment accuracy was measured as the percentage of positions in the tested alignment that were identical to the reference structure-based alignment). Correspondingly, the average model accuracy increased from 43 to 54% (the model accuracy was measured as the percentage of the Cα atoms of the model that were within 5 Å of the corresponding Cα atoms in the superposed native structure). The present method also compares favorably with two of the most successful previously described methods, PSI-BLAST and SAM. The accuracy of the final models would be increased further if a better method for ranking of the models were available.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号