Visual response properties of neck motor neurons in the honeybee |
| |
Authors: | Y.-S. Hung J. P. van Kleef M. R. Ibbotson |
| |
Affiliation: | (1) ARC Centre of Excellence in Vision Science, Research School of Biology and Division of Biomedical Science and Biochemistry, R.N. Robertson Building, Australian National University, Canberra, ACT, 2601, Australia;(2) National Vision Research Institute, Australian College of Optometry, Corner Keppel and Cardigan Streets, Carlton, VIC, 3053, Australia; |
| |
Abstract: | Recent behavioural studies have demonstrated that honeybees use visual feedback to stabilize their gaze. However, little is known about the neural circuits that perform the visual motor computations that underlie this ability. We investigated the motor neurons that innervate two neck muscles (m44 and m51), which produce stabilizing yaw movements of the head. Intracellular recordings were made from five (out of eight) identified neuron types in the first cervical nerve (IK1) of honeybees. Two motor neurons that innervate muscle 51 were found to be direction-selective, with a preference for horizontal image motion from the contralateral to the ipsilateral side of the head. Three neurons that innervate muscle 44 were tuned to detect motion in the opposite direction (from ipsilateral to contralateral). These cells were binocularly sensitive and responded optimally to frontal stimulation. By combining the directional tuning of the motor neurons in an opponent manner, the neck motor system would be able to mediate reflexive optomotor head turns in the direction of image motion, thus stabilising the retinal image. When the dorsal ocelli were covered, the spontaneous activity of neck motor neurons increased and visual responses were modified, suggesting an ocellar input in addition to that from the compound eyes. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|