Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC beta-lactamase |
| |
Authors: | Barlow Miriam Hall Barry G |
| |
Affiliation: | Biology Department, University of Rochester, Rochester, New York 14627-0211, USA. |
| |
Abstract: | Understanding of the evolutionary histories of many genes has not yet allowed us to predict the evolutionary potential of those genes. Intuition suggests that current biochemical activity of gene products should be a good predictor of the potential to evolve related activities; however, we have little evidence to support that intuition. Here we use our in vitro evolution method to evaluate biochemical activity as a predictor of future evolutionary potential. Neither the class C Citrobacter freundii CMY-2 AmpC beta-lactamase nor the class A TEM-1 beta-lactamase confer resistance to the beta-lactam antibiotic cefepime, nor do any of the naturally occurring alleles descended from them. However, the CMY-2 AmpC enzyme and some alleles descended from TEM-1 confer high-level resistance to the structurally similar ceftazidime. On the basis of the comparison of TEM-1 and CMY-2, we asked whether biochemical activity is a good predictor of the evolutionary potential of an enzyme. If it is, then CMY-2 should be more able than the TEMs to evolve the ability to confer higher levels of cefepime resistance. Although we generated CMY-2 evolvants that conferred increased cefepime resistance, we did not recover any CMY-2 evolvants that conferred resistance levels as high as the best cefepime-resistant TEM alleles. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|