首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production
Authors:Andreas N Kavazis  Erin E Talbert  Ashley J Smuder  Matthew B Hudson  W Bradley Nelson  Scott K Powers
Institution:1. Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece;2. Division of Sport and Exercise Sciences, Abertay University, Dundee, UK;3. Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, Greece;4. Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
Abstract:Mechanical ventilation (MV) is a life-saving intervention used in patients with acute respiratory failure. Unfortunately, prolonged MV results in diaphragmatic weakness, which is an important contributor to the failure to wean patients from MV. Our laboratory has previously shown that reactive oxygen species (ROS) play a critical role in mediating diaphragmatic weakness after MV. However, the pathways responsible for MV-induced diaphragmatic ROS production remain unknown. These experiments tested the hypothesis that prolonged MV results in an increase in mitochondrial ROS release, mitochondrial oxidative damage, and mitochondrial dysfunction. To test this hypothesis, adult (3–4 months of age) female Sprague–Dawley rats were assigned to either a control or a 12-h MV group. After treatment, diaphragms were removed and mitochondria were isolated for subsequent respiratory and biochemical measurements. Compared to control, prolonged MV resulted in a lower respiratory control ratio in diaphragmatic mitochondria. Furthermore, diaphragmatic mitochondria from MV animals released higher rates of ROS in both State 3 and State 4 respiration. Prolonged MV was also associated with diaphragmatic mitochondrial oxidative damage as indicated by increased lipid peroxidation and protein oxidation. Finally, our data also reveal that the activities of the electron transport chain complexes II, III, and IV are depressed in mitochondria isolated from diaphragms of MV animals. In conclusion, these results are consistent with the concept that diaphragmatic inactivity promotes an increase in mitochondrial ROS emission, mitochondrial oxidative damage, and mitochondrial respiratory dysfunction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号