首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Cav1.3 channels
Authors:Michael R Tadross  Manu Ben Johny  David T Yue
Institution:1.Department of Neuroscience, and 2.Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
Abstract:Ca2+/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca2+ channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within CaV1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a “hinged lid–shield” mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a “shield” in CaV1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca2+ channelopathies involving S6 mutations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号