首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Successful <Emphasis Type="Italic">Agrobacterium</Emphasis>-Mediated Genetic Transformation of Maize Elite Inbred lines
Authors:Xueqing?Huang  Email author" target="_blank">Zhiming?WeiEmail author
Institution:(1) Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 200032 Shanghai, P.R. China
Abstract:An efficient transformation system was developed for maize (Zea mays L.) elite inbred lines using Agrobacterium-mediated gene transfer by identifying important factors that affected transformation efficiency. The hypervirulent Agrobacterium tumefaciens strain EHA105 proved to be better than octopine LBA4404 and nopaline GV3101. Improved transformation efficiencies were obtained when immature embryos were inocubated with Agrobacterium suspension cells (A600 = 0.8) for 20 min in the presence of 0.1% (v/v) of a surfactant (Tween20) in the infection medium. Optimized cocultivation was performed in the acidic medium (pH5.4) at 22 °C in the dark for 3 days. Using the optimized system, we obtained 42 morphologically normal, independent transgenic plants in four maize elite inbred lines representing different genetic backgrounds. Most of them (about 85%) are fertile. The transformation frequency (the number of independent, PCR-positive transgenic plants per 100 embryos infected) ranged from 2.35 to 5.26%. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. One to three copies of the transgene were integrated into the maize nuclear genome. About 70% of the transgenic plants received a single insertion of the transgenes based on Southern analysis of 10 transformed events. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This system should facilitate the introduction of agronomically important genes into commercial genotypes.
Keywords:Agrobacterium tumefaciens  genetic transformation  immature embryos  transgenic plants  Zea mays
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号