首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diblock glycopolymers promote colloidal stability of polyplexes and effective pDNA and siRNA delivery under physiological salt and serum conditions
Authors:Smith Adam E  Sizovs Antons  Grandinetti Giovanna  Xue Lian  Reineke Theresa M
Institution:Macromolecules and Interfaces Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Abstract:A series of glycopolymers composed of 2-deoxy-2-methacrylamido glucopyranose (MAG) and the primary amine-containing N-(2-aminoethyl) methacrylamide (AEMA) were synthesized via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The colloidal stability of the polyplexes formed with three diblock glycopolymers and pDNA was assessed using dynamic light scattering, and the polyplexes were found to be stable against aggregation in the presence of salt and serum over the 4 h time period studied. Delivery experiments were performed in vitro to examine the cellular uptake, transfection efficiency, and cytotoxicity of the glycopolymer/pDNA polyplexes in cultured HeLa cells and the diblock copolymer with the shortest AEMA block was found to be the most effective. Additionally, the ability of the diblock glycopolymers to deliver siRNA to U-87 (glioblastoma) cells was screened, and the diblock copolymer with the longest AEMA block was found to have gene knockdown efficacy similar to Lipofectamine 2000.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号