首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural reorganization of proteins revealed by radiolysis and mass spectrometry: G-actin solution structure is divalent cation dependent
Authors:Guan Jing-Qu  Almo Steven C  Reisler Emil  Chance Mark R
Institution:Center for Synchrotron Biosciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
Abstract:The solution structures of isolated monomeric actins in their Mg(2+)-ATP and Ca(2+)-ATP bound forms and in complexes with gelsolin segment-1 have been probed using hydroxyl radicals (*OH) generated by synchrotron X-ray radiolysis. Proteolysis and mass spectrometry analysis of 28 peptides containing 58 distinct reactive probe sites within actin were used to monitor conformational variations linked to divalent cation and gelsolin segment-1 binding. The solvent accessibilities of the probe sites, as measured by footprinting in solution for the Ca(2+)-G-actin and Mg(2+)-G-actin complexes with gelsolin segment-1, were consistent with available crystallographic data. This included a specific protection at the contact interface between the partners, as revealed by reduced reactivity of peptide 337-359 in the complex. Aside from the specific protection indicated previously, the oxidation rates for the reactive residues of the isolated Ca(2+)-G-actin were similar to those of the actin gelsolin segment-1 complexes; however, the reactivity of numerous residues in the isolated Mg(2+)-G-actin form was significantly reduced. Specifically, Mg(2+)-G-actin has a set of protected sites relative to Ca(2+)-G-actin that suggest a structural reorganization in subdomains 4 and 2 and a C-terminus more closely packed onto subdomain 1. These conformational variations for isolated Mg(2+)-G-actin provide a structural basis for its greater tendency to polymerize into filaments as compared to Ca(2+)-G-actin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号