首页 | 本学科首页   官方微博 | 高级检索  
     


A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study
Affiliation:1. Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;2. Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Zhongzheng Dist., Taipei City 100, Taiwan;1. Department of Physics and Astronomy, University of Catania, Italy;2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione Catania, Italy;3. University of Sassari, Sassari, Italy;4. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Italy;1. Faculty of Physics, Department of Medical Physics, Experimental Physics, Ludwig-Maximilians-Universität München, Munich, Germany;2. Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany;3. Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy;1. Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan;2. Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan;1. Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Lyon 1, CNRS/IN2P3 UMR 5822, 69622 Villeurbanne cedex, France;2. Aix-Marseille Université, CNRS/IN2P3, CPPM UMR 7346, 13288 Marseille, France;3. Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA - Lyon, Université Lyon 1, Centre Léon Bérard, France;4. Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France;1. Department of Biomedical Engineering & Environmental Sciences, National Tsing-Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan;2. Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan;3. Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan;1. Istituto Nazionale di Fisica Nucleare, sez. Torino, via Giuria 1, 10125 Torino, Italy;2. Università degli Studi di Torino, dipartimento di Fisica, via Giuria 1, 10125 Torino, Italy;3. Politecnico di Milano, piazza L. Da Vinci 32, 20133 Milano, Italy;4. Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica, strada Campeggi 53, 27100 Pavia, Italy;5. Istituto Nazionale di Fisica Nucleare, sez. Milano, via Celoria 16, 20133 Milano, Italy;6. Università di Pisa, dipartimento di Fisica, lungarno A. Pacinotti 43, 56126 Pisa, Italy;7. Istituto Nazionale di Fisica Nucleare, sez. Pisa, largo B. Pontecorvo 3, 56127 Pisa, Italy;8. CERN, CH-1211, Geneva 23, Switzerland
Abstract:PurposeIn proton therapy, imaging prompt gamma (PG) rays has the potential to verify proton dose (PD) distribution. Despite the fact that there is a strong correlation between the gamma-ray emission and PD, they are still different in terms of the distribution and the Bragg peak (BP) position. In this work, we investigated the feasibility of using a deep learning approach to convert PG images to PD distributions.MethodsWe designed the Monte Carlo simulations using 20 digital brain phantoms irradiated with a 100-MeV proton pencil beam. Each phantom was used to simulate 200 pairs of PG images and PD distributions. A convolutional neural network based on the U-net architecture was trained to predict PD distributions from PG images.ResultsOur simulation results show that the pseudo PD distributions derived from the corresponding PG images agree well with the simulated ground truths. The mean of the BP position errors from each phantom was less than 0.4 mm. We also found that 2000 pairs of PG images and dose distributions would be sufficient to train the U-net. Moreover, the trained network could be deployed on the unseen data (i.e. different beam sizes, proton energies and real patient CT data).ConclusionsOur simulation study has shown the feasibility of predicting PD distributions from PG images using a deep learning approach, but the reliable prediction of PD distributions requires high-quality PG images. Image-degrading factors such as low counts and limited spatial resolution need to be considered in order to obtain high-quality PG images.
Keywords:Prompt gamma imaging  Proton dose  Deep learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号