首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation
Institution:1. State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences of Ministry of Education, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;2. Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan;1. Laboratory of Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;2. Biofuel R&D Group, Frontier Research Laboratory, Central Technical Research Laboratory, JXTG Nippon Oil & Energy Corporation, 8 Chidoricho, Naka-ku, Yokohama 231-0815, Japan;3. Metabolic Profiling Research Group, Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;4. Laboratory of Synthetic Biology, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;1. Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States;2. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States;3. Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States;4. Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
Abstract:
Keywords:Lignocellulosic ethanol  Xylose fermentation  Stress-driven promoter  Robustness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号