首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production
Affiliation:1. Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;2. School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
Abstract:Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methanol auxotrophs have proved successful, these studies focused on scarce and expensive co-substrates. Here, we engineered E. coli for methanol-dependent growth on glucose, an abundant and inexpensive co-substrate, via deletion of glucose 6-phosphate isomerase (pgi), phosphogluconate dehydratase (edd), and ribose 5-phosphate isomerases (rpiAB). Since the parental strain did not exhibit methanol-dependent growth on glucose in minimal medium, we first achieved methanol-dependent growth via amino acid supplementation and used this medium to evolve the strain for methanol-dependent growth in glucose minimal medium. The evolved strain exhibited a maximum growth rate of 0.15 h−1 in glucose minimal medium with methanol, which is comparable to that of other synthetic methanol auxotrophs. Whole genome sequencing and 13C-metabolic flux analysis revealed the causative mutations in the evolved strain. A mutation in the phosphotransferase system enzyme I gene (ptsI) resulted in a reduced glucose uptake rate to maintain a one-to-one molar ratio of substrate utilization. Deletion of the e14 prophage DNA region resulted in two non-synonymous mutations in the isocitrate dehydrogenase (icd) gene, which reduced TCA cycle carbon flux to maintain the internal redox state. In high cell density glucose fed-batch fermentation, methanol-dependent acetone production resulted in 22% average carbon labeling of acetone from 13C-methanol, which far surpasses that of the previous best (2.4%) found with methylotrophic E. coli Δpgi. This study addresses the need to identify appropriate co-substrates for engineering synthetic methanol auxotrophs and provides a basis for the next steps toward industrial one-carbon bioprocessing.
Keywords:Synthetic methylotrophy  Methanol  Methanol-dependence  Glucose
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号