首页 | 本学科首页   官方微博 | 高级检索  
   检索      


ARVC-related mutations in divergent region 3 alter functional properties of the cardiac ryanodine receptor
Authors:Koop Andrea  Goldmann Petra  Chen S R Wayne  Thieleczek Rolf  Varsányi Magdolna
Institution:* Institut für Physiologische Chemie, Abteilung Biochemie Supramolekularer Systeme, Ruhr-Universität Bochum, 44780 Bochum, Germany
Departments of Physiology and Biophysics and of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
Abstract:Two single-nucleotide polymorphisms in the type 2 ryanodine receptor (RyR2) leading to the nonsynonymous amino acid replacements G1885E and G1886S are associated with arrhythmogenic right ventricular cardiomyopathy in patients who are carrying both of the corresponding RyR2 alleles. The functional properties of HEK293 cell lines isogenically expressing RyR2 mutants associated with arrhythmogenic right ventricular cardiomyopathy, RyR2-G1885E, RyR2-G1886S, RyR2-G1886D (mimicking a constitutively phosphorylated Ser1886), and the double mutant RyR2-G1885E/G1886S were investigated by analyzing the intracellular Ca2+ release activity resulting from store-overload-induced calcium release. The substitution of serine for Gly1886 caused a significant increase in the cellular Ca2+ oscillation activity compared with RyR2 wild-type-expressing HEK293 cells. It was even more pronounced if glycine 1885 or 1886 was replaced by the acidic amino acids glutamate (G1885E) or aspartate (G1886D). Surprisingly, when both substitutions were introduced in the same RyR2 subunit (RyR2-G1885E/G1886S), the store-overload-induced calcium release activity was nearly completely abolished, although the Ca2+ loading of the intracellular stores was markedly enhanced, and the channel still displayed substantial Ca2+ release on stimulation by 5 mM caffeine. These results suggest that the adjacent glycines 1885 and 1886, located in the divergent region 3, are critical for the function and regulation of RyR2.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号