首页 | 本学科首页   官方微博 | 高级检索  
     


Anion modulation of the slowly activating vacuolar channel
Authors:Miedema H  Pantoja O
Affiliation:(1) Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA, US
Abstract:A series of n-alkanols and phenyl-substituted n-alkanols (Φ-alkanols) of increasing chain length and phenol were characterized for their ability to block action potentials (APs) in frog sciatic nerves. APs were recorded using the single sucrose-gap method. The degree of AP attenuation when the nerve was exposed to different concentrations of an alcohol was used to construct dose-response curves. The reciprocals of the half-blocking doses (ED50s) were used to obtain a measure of the potency of the alcohols. For n-alkanols and Φ-alkanols, increasing the chain length by the addition of a methylene group increased the potency on average by 3.1 for both groups of alkanols. The addition of a phenyl group caused a potency increase that ranged between the values of 77 and 122. The ED50 for both groups of alkanols could not be solely predicted by the log octanol-water partition coefficient (K OW ). Using linear solvation energy relations (LSER), the log ED50 could be described as a linear combination of the intrinsic (van der Waals) molar volume (V I ), polarity (P), and hydrogen bond acceptor basicity (β) and donor acidity (α). Size alone could not predict the ED50 for both n-alkanols and Φ-alkanols. The results are consistent with the hypothesis that alkanols bind to and interact with Na channels to cause AP block. Phenyl group addition to an alkanol markedly increases the molecule's potency. Received: 11 August 2000/Revised: 21 December 2000
Keywords:: Action potential block —   Anesthesia —   Alkanols —   Phenyl substitution
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号