首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tissue-culture enhanced transposition of the maize transposable element <Emphasis Type="Italic">Dissociation</Emphasis> in <Emphasis Type="Italic">Brassica oleracea</Emphasis> var. '<Emphasis Type="Italic">Italica</Emphasis>'
Authors:N Mckenzie  L-Y Wen  P Dale
Institution:John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK, neil.mckenzie@bbsrc.ac.uk
Abstract:To investigate the potential of heterologous transposons as a gene tagging system in broccoli (Brassica oleracea var. Italica), we have introduced a Ds-based two-element transposon system. Ds has been cloned into a 35S-SPT excision-marker system, with transposition being driven by an independent 35S-transposase gene construct (Tpase). In three successive selfed generations of plants there was no evidence of germinal-excision events. To overcome this apparent inability to produce B. oleracea plants with germinal excisions, we performed a novel tissue-culture technique to select for fully green shoots from seed with somatic-excision events. The results showed a very high efficiency of regeneration of fully green plants (up to 65%) and molecular analysis indicated that the plants genetically were like plants that contain a germinal-excision event. Further molecular analysis of these plants showed that 69% exhibited reinsertion of Ds back into the plant genome. Sequencing of donor-site footprints after Ds excision, revealed that there is an indication of more-severe deletions and rearrangements when higher concentrations of streptomycin are used in the tissue-culture selection process. Adapted versions of this regeneration technique have a high potential for providing germinal excision-like events in heterologous plants species which show low transposon activity. Alternatively, there is the potential to increase the proportion of 'germinal' plants in earlier generations of more-active plant species.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号