首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of inorganic cations and metabolic inhibitors on putrescine transport in roots of intact maize seedlings
Authors:Ditomaso J M  Hart J J  Linscott D L  Kochian L V
Institution:Department of Soil, Crop, and Atmospheric Sciences, U.S. Department of Agriculture-Agricultural Research Station, Cornell University, Ithaca, New York 14853.
Abstract:The specificity and regulation of putrescine transport was investigated in roots of intact maize (Zea mays L.) seedlings. In concentration-dependent transport studies, the kinetics for putrescine uptake could be resolved into a single saturable component that was noncompetitively inhibited by increasing concentrations of Ca2+ (50 micromolar to 5 millimolar). Similarly, other polyvalent cations, including Mg2+ (1.8 millimolar) and La3+ (200 micromolar), almost completely abolished the saturable component for putrescine uptake. This suggests that putrescine does not share a common transport system with other divalent or polyvalent inorganic cations. Further characterization of the putrescine transport system indicated that 0.3 millimolar N-ethyl-maleimide had no effect on putrescine uptake, and 2 millimolar p-chloromercuribenzene sulfonic acid only partially inhibited transport of the diamine (39% inhibition). Metabolic inhibitors, including carbonylcyanide-m-chlorphenylhydrazone (20 micromolar) and KCN (0.5 millimolar), also partially inhibited the saturable component for putrescine uptake (Vmax reduced 48-60%). Increasing the time of exposure to carbonylcyanide-m-chlorphenylhydrazone from 30 minutes to 2 hours did not significantly increase the inhibition of putrescine uptake. Electrophysiological evidence indicates that the inhibitory effect on putrescine uptake by these inhibitors is correlated to a depolarization of the membrane potential, suggesting that the driving force for putrescine uptake is the transmembrane electrical potential across the plasmalemma.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号