首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation of a yeast single-strand deoxyribonucleic acid binding protein that specifically stimulates yeast DNA polymerase I
Authors:S G LaBonne  L B Dumas
Abstract:We sought a protein from yeast that would bind more strongly to single-stranded DNA than to duplex DNA and would stimulate the activity of the major yeast DNA polymerase, but not polymerases from other organisms. We isolated a protein that binds about 200 times more strongly to single-stranded DNA than duplex DNA and stimulates yeast DNA polymerase I activity 4-5-fold. It inhibits synthesis catalyzed by calf thymus DNA polymerase alpha and has little effect on T4 DNA polymerase. This yeast protein, SSB-1, has a molecular weight of approximately 40 000. At apparent saturation there is one protein molecule bound per 40 nucleotides. Protein binding causes the single-stranded DNA molecule to assume a relatively extended conformation. It binds to single-stranded RNA as strongly as to DNA. SSB-1 increases the initial rate of polymerization catalyzed by yeast DNA polymerase I apparently by increasing the processivity of the enzyme. We estimate there are 7500-30 000 molecules of SSB-1 per yeast cell, enough to bind at least 400-1600 nucleotides per replication fork. Thus it is present in sufficient abundance to participate in DNA replication in vivo in the manner suggested by these in vitro experiments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号