首页 | 本学科首页   官方微博 | 高级检索  
     


The plant glycosyltransferase clone collection for functional genomics
Authors:Jeemeng Lao  Ai Oikawa  Jennifer R. Bromley  Peter McInerney  Anongpat Suttangkakul  Andreia M. Smith‐Moritz  Hector Plahar  Tsan‐Yu Chiu  Susana M. González Fernández‐Niño  Berit Ebert  Fan Yang  Katy M. Christiansen  Sara F. Hansen  Solomon Stonebloom  Paul D. Adams  Pamela C. Ronald  Nathan J. Hillson  Masood Z. Hadi  Miguel E. Vega‐Sánchez  Dominique Loqué  Henrik V. Scheller  Joshua L. Heazlewood
Affiliation:1. Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, , Berkeley, CA, 94720 USA;2. Sandia National Laboratory, , Livermore, CA, 94551 USA;3. Department of Bioengineering, University of California, , Berkeley, CA, 94720 USA;4. Department of Plant Pathology and the Genome Center, University of California, , Davis, CA, 95616 USA;5. Department of Plant and Microbial Biology, University of California, , Berkeley, CA, 94720 USA
Abstract:The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .
Keywords:glycosyltransferase  Arabidopsis  rice  particle bombardment  GT14  cell wall  endomembrane  subcellular localization  biolistics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号