首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ferric Ion and Oxygen Reduction at the Surface of Protoplasts and Cells of Acer pseudoplatanus
Authors:F Macrì  E Braidot  E Petrussa  M Zancani  A Vianello
Abstract:This work was undertaken to verify whether surface NADH oxidases or peroxidases are involved in the apoplastic reduction of Fe(III). The reduction of Fe(III)-ADP, linked to NADH-dependent activity of horseradish peroxidase (HRP), protoplasts and cells of Acer pseudoplatanus, was measured as Fe(II)-bathophenanthrolinedisulfonate (BPDS) chelate formation. In the presence of BPDS in the incubation medium (method 1), NADH-dependent HRP activity was associated with a rapid Fe(III)-ADP reduction that was almost completely inhibited by superoxide dismutase (SOD), while catalase only slowed down the rate of reduction. A. pseudoplatanus protoplasts and cells reduced extracellular Fe(III)-ADP in the absence of exogenously supplied NADH. The addition of NADH stimulated the reduction. SOD and catalase only inhibited the NADH-dependent Fe(III)-ADP reduction. Mn(II), known for its ability to scavenge O?2, inhibited both the independent and NADH-dependent Fe(III)-ADP reduction. The reductase activity of protoplasts and cells was also monitored in the absence of BPDS (method 2). The latter was added only at the end of the reaction to evaluate Fe(II) formed. Also, in this case, both preparations reduced Fe(III)-ADP. However, the addition of NADH did not stimulate Fe(III)-ADP reduction but, instead, lowered it. This may be related to a re-oxidation of Fe(II) by H2O2 that could also be produced during NADH-dependent peroxidase activity. Catalase and SOD made the Fe(III)-ADP reduction more efficient because, by removing H2O2 (catalase) or preventing H2O2 formation (SOD), they hindered the re-oxidation of Fe(II) not chelated by BPDS. As with the result obtained by method 1, Mn(II) inhibited Fe(III)-ADP reduction carried out in the presence or absence of NADH. The different effects of SOD and Mn(II), both scavengers of O?2, may depend on the ability of Mn(II) to permeate the cells more easily than SOD. These results show that A. pseudoplatanus protoplasts and cells reduce extracellular Fe(III)-ADP. Exogenously supplied NADH induces an additional reduction of Fe(III) by the activity of NADH peroxidases of the plasmalemma or cell wall. However, the latter can also trigger the formation of H2O2 that, reacting with Fe(II) (not chelated by BPDS), generates hydroxyl radicals and converts Fe(II) to Fe(III) (Fenton's reaction).
Keywords:Acer pseudoplatanus L    cell  iron reduction  oxygen reduction  protoplast
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号