首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CNV-like potentials on the cortical surface associated with conditioning in head-restrained rats
Institution:1. Department of Psychophysiology, Psychiatric Research Institute of Tokyo, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156 Japan;2. Department of Neurophysiology, Psychiatric Research Institute of Tokyo, 2-1-8 Kamikitazawa, Setagaya-ku, Tokyo 156 Japan
Abstract:Head-restrained rats were conditioned to perform a CNV task: to press a lever in response to an imperative auditory stimulus (S2) given 1.5 sec after a warning stimulus (S1) for a drop of jelly food. With an electrode on the surface of the forelimb cortex, (1) sharp wave complexes immediately after S1 and S2, and (2) a negative slow potential (SP) between S1 and S2, on which early and late components were discernible, were recorded in association with performance of this task. With the electrode at a depth of 2 mm in the same cortical area, the corresponding field potential showed a long-lasting positive shift in addition to the components of the surface potential. These monopolar recordings were obtained with respect to a common reference at the frontal sinus. The surface-minus-depth potential (the transcortical potential), consequently, showed a surface-negative tonic wave, confirming Pirch's report (1980). During extinction of this conditioning, the SP between S1 and S2 disappeared, while the sharp waves following S1 and S2 remained with little modification, suggesting that the sharp waves are a kind of evoked potential (EP) elicited by the stimuli.Recording from 5 surface electrodes set in an array over the left hemisphere contralateral to the used forelimb during development of the conditioning revealed not only a spatial distribution of the SP but also a transition of the potentials. As the conditioning progressed, the negativity of the early SP component tended to increase, while that of the late component tended to decrease and was confined to the sensorimotor cortex. The similarities of the rat cortical surface potentials to the human and monkey CNV in their wave form and function suggests that the rat brain can produce electrical activity analogous to the human CNV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号