首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamics and modeling of temperature-regulated gene product expression in recombinant yeast fermentation
Authors:Cheng C  Yang S T
Affiliation:Department of Chemical Engineering, The Ohio State University, Columbus, Ohio 43210.
Abstract:The dynamic response of temperature-regulated gene expression in the recombinant yeast Saccharomyces cerevisiae, strain XK1-C2 carrying plasmid pSXR125, to temperature changes during fed-batch and continuous (chemostat) cultures was studied. The production of the gene product, beta-galactosidase, in the yeast cell is sensitive to the growth temperature. Gene expression of this product was fully turned on or off by temperature shifts between 24 and 30 degrees C. However, the response for gene turn-on and turn-off in this recombinant yeast was slow, requiring from several hours to over 10 h to fully appear. The continuous reactor took 30-60 h after the temperature shift to reach a new steady state. A dynamic process model was developed to simulate the reactor and cell responses to temperature shift. A first-order model was used to account for the effect of dilution rate on the change of protein concentration in the chemostat. It was found that cell response in gene expression to temperature shift followed first-order plus dead-time dynamics. Also, the response time for gene expression to temperature shift varied with specific growth rate or dilution rate of the continuous reactor. In general, the response was slower at a higher dilution rate and for gene turn-on than for gene turn-off. (c) 1996 John Wiley & Sons, Inc.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号