首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection
Authors:Eberl Hermann J  Sudarsan Rangarajan
Institution:Department of Mathematics and Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1
Abstract:A previously introduced degenerate diffusion-reaction model of biofilm growth and disinfection is extended to account for convective transport of oxygen and disinfectants in an aqueous environment. To achieve this in a computationally efficient manner we employ a thin-film approximation to the (Navier)-Stokes equations that can be solved analytically. In numerical experiments, we investigate how the convective transport of nutrients and disinfectants due to bulk flow hydrodynamics affects the balance between growth and disinfection processes. It is found that the development of biofilms can be significantly affected by the flow field even at extremely low Reynolds numbers. While it is natural to expect that increased bulk flow velocities imply increased mass transfer of both, nutrients and disinfectants, and hence an acceleration of both, growth and decay of biomass, it is found, furthermore, that in many instances the actual flow conditions, determine the success or failure of disinfection, i.e. persistence or extinction of a biofilm community.
Keywords:Biofilm  Hydrodynamics  Growth  Disinfection  Mathematical model  Simulation
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号