首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of the numerical density of perforated synapses in rat neocortex
Authors:R K S Calverley  Dr D G Jones
Institution:(1) The Neuroscience Centre and Department of Anatomy, University of Otago, Dunedin, New Zealand;(2) Department of Anatomy, University of Otago, P.O. Box 913, Dunedin, New Zealand
Abstract:Summary The numerical density and frequency of perforated synapses in the molecular layer of rat parietal cortex have been determined using 4 procedures in an attempt to overcome problems associated with the size and complex three-dimensional shape of perforated synapses. The following procedures were compared: A, single-section analysis; B, adjacent-section analysis; C, semi-serial-section analysis; and D, complete serial-section analysis. All procedures made use of an unbiased counting rule.Estimates of the numerical density of perforated synapses ranged from 0.06 to 0.27×109 mm-3, and that of all synapses (non-perforated and perforated) from 1.88 to 2.50×109 mm-3. The frequency of perforated synapses varied from 4.5 to 18.0%. Procedures B (adjacent-section analysis) and D (complete serial-section analysis), neither of which utilize assumptions regarding the shape of synapses, produced comparable results (numerical density of perforated synapses 0.19–0.27×109 mm-3, and of all synapses 2.24–2.45×109 mm-3; frequency of perforated synapses 8.6–10.9%). The frequency of perforated synapses appeared to be underestimated by procedure A (single section analysis; 4.5%) and overestimated by C (semi-serial section analysis; 18%).It is concluded that adjacent-section analysis is the most efficient and effective procedure for determining the numerical density and frequency of complex particles, such as perforated synapses. There is, however, no significant difference in the performance of this procedure compared with that of single-section analysis, for determining the numerical density of synapses in general. Nevertheless, inherent problems of bias within the single-section procedure make the adjacent section method the procedure of choice.
Keywords:Synapses  Perforated synapses  Synaptic plasticity  Synaptic density  Morphometry  Serial sections  Section thickness  Rat
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号