首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cloning and genomic organization of the mouse gene slc23a1 encoding a vitamin C transporter.
Authors:S Gispert  A Dutra  A Lieberman  D Friedlich  R L Nussbaum
Institution:Genetic Disease Research Branch, National Human Genome Research Institute, and Howard Hughes Medical Institute, NIH, Bethesda, Maryland 20892-4472, USA.
Abstract:Vitamin C is known to exist in particularly high concentrations in brain tissue, and its free radical scavenging function is thought to represent a major antioxidative defense system. We have cloned, sequenced and analyzed the genomic structure of a mouse sodium-dependent vitamin C transporter gene, Slc23a1 (also known as Svct2). The mouse Slc23a1 cDNA is 6.4 kb long and was cloned directly from a mouse brain RNA preparation. Hybridization screening of a mouse genomic BAC library identified BAC 53L21 which contains at least the entire coding sequence of the mouse Slc23a1 gene. Determination of the exon-intron structure of the gene revealed 17 exons ranging from 58 bp to 4407 bp extending over 50 kb of the mouse genome, with the translation start codon located in exon 3. Its 1944 nucleotide open reading frame encodes a polypeptide of 647 aa, which is highly similar to rat and human orthologs. The mouse gene was assigned to chromosome 2qG2 by fluorescence in situ hybridization analysis. Expression of this gene was demonstrated in a wide range of tissues, with especially high levels in brain. Neurodegenerative diseases with an established role for oxidative stress in the cytoplasm may therefore be conditions of SLC23A1 dysfunction. Key words: gene structure; Vitamin C; transporter; oxidative stress
Keywords:gene structure  Vitamin C  transporter  oxidative stress
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号