首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation
Authors:Gorski Jeff P  Wang Aimin  Lovitch Dinah  Law Douglas  Powell Kimerly  Midura Ronald J
Institution:Division of Biochemistry and Molecular Biology, School of Biological Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA. Gorskij@umkc.edu
Abstract:Bone acidic glycoprotein-75 is expressed very early during in vivo models of intramembranous bone formation, highly enriched in condensing osteogenic mesenchyme after marrow ablation and the osteoprogenitor layer of tibial periosteum. Bone sialoprotein accumulates within bone acidic glycoprotein-75-enriched matrix areas at a later stage in both models. Decalcification of initial sites of mineralization consistently revealed focal immunostaining for bone acidic glycoprotein-75 underneath these sites suggesting that mineralization occurs within bone acidic glycoprotein-75-enriched matrix areas. Ultrastructural immunolocalization of bone acidic glycoprotein-75 does not support a direct association with banded collagen fibrils, but rather suggests it is a component of a separate, amorphous scaffold occupying interfibrillar spaces. Double immunogold labeling demonstrated that a sizeable proportion of bone sialoprotein particles were located within a 50-nm radius of bone acidic glycoprotein-75. These results define bone acidic glycoprotein-75 as the earliest bone-restricted, extracellular marker of osteogenic mesenchyme. Based on this early bone-restricted expression pattern and a previously documented propensity of bone acidic glycoprotein-75 to form supramolecular complexes through self-association, bone acidic glycoprotein-75 may serve a key structural role in setting boundary limits of condensing osteogenic mesenchyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号