首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A graph-theoretic approach for the separation of b and y ions in tandem mass spectra
Authors:Yan Bo  Pan Chongle  Olman Victor N  Hettich Robert L  Xu Ying
Institution:Computational Systems Biology Laboratory, Department of Biochemical and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Abstract:MOTIVATION: Ion-type identification is a fundamental problem in computational proteomics. Methods for accurate identification of ion types provide the basis for many mass spectrometry data interpretation problems, including (a) de novo sequencing, (b) identification of post-translational modifications and mutations and (c) validation of database search results. RESULTS: Here, we present a novel graph-theoretic approach for solving the problem of separating b ions from y ions in a set of tandem mass spectra. We represent each spectral peak as a node and consider two types of edges: type-1 edge connecting two peaks probably of the same ion types and type-2 edge connecting two peaks probably of different ion types. The problem of ion-separation is formulated and solved as a graph partition problem, which is to partition the graph into three subgraphs, representing b, y and others ions, respectively, through maximizing the total weight of type-1 edges while minimizing the total weight of type-2 edges within each partitioned subgraph. We have developed a dynamic programming algorithm for rigorously solving this graph partition problem and implemented it as a computer program PRIME (PaRtition of Ion types in tandem Mass spEctra). The tests on a large amount of simulated mass spectra and 19 sets of high-quality experimental Fourier transform ion cyclotron resonance tandem mass spectra indicate that an accuracy level of approximately 90% for the separation of b and y ions was achieved. AVAILABILITY: The executable code of PRIME is available upon request. CONTACT: xyn@bmb.uga.edu.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号