首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic diversity and structure of the invasive tree Miconia calvescens in Pacific islands
Authors:Johannes J Le Roux  Ania M Wieczorek  Jean‐Yves Meyer
Institution:1. Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, 3190 Maile Way, St. John 102, Honolulu, Hawaii, 96822, USA,;2. Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3050 Maile Way, Gilmore Hall 310, Honolulu, Hawaii, 96822, USA,;3. Délégation à la Recherche, B. P. 20981, Papeete, Tahiti, Polynésie Fran?aise
Abstract:Aim This study investigates the amount and distribution of genetic variation within and among populations of the highly invasive tree, Miconia calvescens (Melastomataceae; hereafter miconia), in tropical island habitats that are differently impacted (distribution and spread) by this weed. Location Invasive populations were included from northern and southern Pacific islands including the Hawaiian Islands (Hawaii, Kauai and Maui), Marquesas Islands (Nuku Hiva), Society Islands (Tahiti, Tahaa, Moorea, Raiatea) and New Caledonia. Methods We used 9 codominant microsatellite and 77 highly variable dominant intersimple sequence repeat markers (ISSRs) to characterize and compare genetic diversity among and within invasive miconia populations. For the codominant microsatellite data we calculated standard population genetic estimates (heterozygosity, number of alleles, inbreeding coefficients, etc.) and described population genetic structure using AMOVA, Mantel tests (to test for isolation by distance), unweighted pair‐group method with arithmetic averages (UPGMA) cluster analysis and principal components analysis (PCA). We also tested for the presence of a population bottleneck and used a Bayesian analysis of population structure in combination with individual assignment tests. For the dominant ISSR data we used AMOVA, PCA, upgma and a Bayesian approach to investigate population genetic structure. Results Both markers types showed little to no genetic differentiation among miconia populations from northern and southern Pacific hemispheres (AMOVA: microsatellite, 3%; ISSR, 0%). Bayesian and frequency‐based analysis also failed to support geographical genetic structure, confirming considerable low genetic differentiation throughout the Pacific. Molecular data furthermore showed that highly successful miconia populations throughout the Pacific are currently undergoing severe bottlenecks and high levels of inbreeding (f = 0.91, ISSR; FIS = 0.27, microsatellite). Main conclusions The lack of population genetic structure is indicative of similar geographical sources for both hemispheres and small founding populations. Differences in invasive spread and distribution among Pacific islands are most likely the result of differences in introduction dates to different islands and their accompanying lag phases. Miconia has been introduced to relatively few tropical islands in the Pacific, and the accidental introduction of a few or even a single seed into favourable habitats could lead to high invasive success.
Keywords:Biological invasions  invasive species  ISSRs  genetic diversity  Miconia calvescens  microsatellites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号