首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PLASTID DYNAMICS DURING SURVIVAL OF DINOPHYSIS CAUDATA WITHOUT ITS CILIATE PREY1
Authors:Myung Gil Park  Jong Soo Park  Miran Kim  Wonho Yih
Institution:1. Laboratory of HAB Ecophysiology (LOHABE), Department of Oceanography, Chonnam National University, Gwangju 500 2. 757, Korea;3. Author for correspondence: e‐mail .;4. Department of Oceanography, Kunsan National University, Kunsan 573 5. 701, Korea
Abstract:To survive, the marine dinoflagellate Dinophysis caudata Saville‐Kent must feed on the plastidic ciliate Myrionecta rubra (=Mesodinium rubrum), itself a consumer of cryptophytes. Whether Dcaudata has its own permanent chloroplasts or retains plastids from its ciliate prey, however, remains unresolved. Further, how long Dcaudata plastids (or kleptoplastids) persist and remain photosynthetically active in the absence of prey remains unknown. We addressed those issues here, using the first established culture of D. caudata. Phylogenetic analyses of the plastid 16S rRNA and psbA gene sequences directly from the three organisms (Dcaudata, Mrubra, and a cryptophyte) revealed that the sequences of both genes from the three organisms are almost identical to each other, supporting that the plastids of Dcaudata are kleptoplastids. A 3‐month starvation experiment revealed that Dcaudata can remain photosynthetically active for ~2 months when not supplied with prey. Dcaudata cells starved for more than 2 months continued to keep the plastid 16S rRNA gene but lost the photosynthesis‐related genes (i.e., psaA and psbA genes). When the prey was available again, however, Dcaudata cells starved for more than 2 months were able to reacquire plastids and slowly resumed photosynthetic activity. Taken all together, the results indicate that the nature of the relationship between Dcaudata and its plastids is not that of permanent cellular acquisitions. Dcaudata is an intriguing protist that would represent an interesting evolutionary adaptation with regard to photosynthesis as well as help us to better understand plastid evolution in eukaryotes.
Keywords:dinoflagellate  Dinophysis  kleptoplastid  Myrionecta rubra  plastid evolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号