首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physiological and inflammatory response to instillation of an oxidized surfactant in a rat model of surfactant deficiency.
Authors:Timothy C Bailey  Keith A Da Silva  James F Lewis  Karina Rodriguez-Capote  Fred Possmayer  Ruud A W Veldhuizen
Institution:Department of Physiology and Pharmacology, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada N6A 4V2. tbailey2@uwo.ca
Abstract:Pulmonary surfactant is a mixture of phospholipids ( approximately 90%) and surfactant-associated proteins (SPs) ( approximately 10%) that stabilize the lung by reducing the surface tension. One proposed mechanism by which surfactant is altered during acute lung injury is via direct oxidative damage to surfactant. In vitro studies have revealed that the surface activity of oxidized surfactant was impaired and that this effect could be overcome by adding SP-A. On the basis of this information, we hypothesized that animals receiving oxidized surfactant preparations would exhibit an inferior physiological and inflammatory response and that the addition of SP-A to the oxidized preparations would ameliorate this response. To test this hypothesis, mechanically ventilated, surfactant-deficient rats were administered either bovine lipid extract surfactant (BLES) or in vitro oxidized BLES of three doses: 10 mg/kg, 50 mg/kg, or 10 mg/kg + SP-A. When instilled with 10 mg/kg normal surfactant, the rats had a significantly superior arterial Po2 responses compared with the rats receiving oxidized surfactant. Interestingly, increasing the dose five times mitigated this physiological effect, and the addition of SP-A to the surfactant preparation had little impact on improving oxygenation. There were no differences in alveolar surfactant pools and the indexes of pulmonary inflammation between the 10 mg/kg dose groups, nor was there any differences observed between either of the groups supplemented with SP-A. However, there was significantly more surfactant and more inflammatory cytokines in the 50 mg/kg oxidized BLES group compared with the 50 mg/kg BLES group. We conclude that instillation of an in vitro oxidized surfactant causes an inferior physiological response in a surfactant-deficient rat.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号