首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mitochondria play a critical role in shaping the exocytotic response of rat pancreatic acinar cells
Authors:Thomas Paul  Bagrij Tanya  Campos-Toimil Manuel  Edwardson J Michael
Institution:Henry Wellcome Laboratory for Cell Imaging, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK. p.thomas@uea.ac.uk
Abstract:We have previously demonstrated M. Campos-Toimil, T. Bagrij, J.M. Edwardson, P. Thomas, Two modes of secretion in pancreatic acinar cells: involvement of phosphatidylinositol 3-kinase and regulation by capacitative Ca(2+) entry, Curr. Biol. 12 (2002) 211-215] that in rat pancreatic acinar cells, Gd(3+)-sensitive Ca(2+) entry is instrumental in governing which second messenger pathways control secretory activity. However, in those studies, we were unable to demonstrate a significant increase in cytoplasmic Ca(2+)] during agonist application as a result of this entry pathway. In the present study, we combined pharmacology with ratiometric imaging of fura-2 fluorescence to resolve this issue. We found that 2 microM Gd(3+) significantly inhibits store-mediated Ca(2+) entry. Furthermore, both the protonophore, CCCP (5 microM) and the mitochondrial Ca(2+)-uptake blocker, RU360 (10 microM), led to an enhancement of the plateau phase of the biphasic Ca(2+) response induced by acetylcholine (1 microM). This enhancement was completely abolished by Gd(3+); and as has been previously shown for Gd(3+), RU360 led to a switch to a wortmannin-sensitive form of exocytosis. Using MitoTracker Red staining we found a close association of mitochondria with the lateral plasma membrane. We propose that in rat pancreatic acinar cells, capacitative Ca(2+) entry is targeted directly to mitochondria; and that as a result of Ca(2+) uptake, these mitochondria release "third" messengers which both enhance exocytosis and suppress phosphatidylinositol 3-kinase-dependent secretion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号