首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of oxidative DNA damage induced by capsaicin, a principal ingredient of hot chili pepper
Authors:Oikawa Shinji  Nagao Emiko  Sakano Katsuhisa  Kawanishi Shosuke
Affiliation: a Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
Abstract:Although capsaicin exhibits antitumor activity, carcinogenic potential has also been reported. To clarify the mechanism for expression of potential carcinogenicity of capsaicin, we examined DNA damage induced by capsaicin in the presence of metal ion and various kinds of cytochrome P450 (CYP) using 32P-5'-end-labeled DNA fragments. Capsaicin induced Cu(II)-mediated DNA damage efficiently in the presence of CYP1A2 and partially in the presence of 2D6. CYP1A2-treated capsaicin caused double-base lesions at 5'-TG-3', 5'-GC-3' and CG of the 5'-ACG-3' sequence complementary to codon 273, a hotspot of p53 gene. DNA damage was inhibited by catalase and bathocuproine, a Cu(I) chelator, suggesting that reactive species derived from the reaction of H2O2 with Cu(I) participate in DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine was significantly increased by CYP1A2-treated capsaicin in the presence of Cu(II). Therefore, we conclude that Cu(II)-mediated oxidative DNA damage by CYP-treated capsaicin seems to be relevant for the expression of its carcinogenicity.
Keywords:Capsaicin  cytochrome P450  H2O2  carcinogenesis  copper
本文献已被 InformaWorld PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号