首页 | 本学科首页   官方微博 | 高级检索  
     


Inversion of both gating polarity and CO2 sensitivity of voltage gating with D3N mutation of Cx50
Authors:Peracchia Camillo  Peracchia Lillian L
Affiliation:Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642-8711, USA. camillo_peracchia@urmc.rochester.edu
Abstract:The effect of CO2-induced acidification on transjunctional voltage (Vj) gating was studied by dual voltage-clamp in oocytes expressing mouse connexin 50 (Cx50) or a Cx50 mutant (Cx50-D3N), in which the third residue, aspartate (D), was mutated to asparagine (N). This mutation inverted the gating polarity of Cx50 from positive to negative. CO2 application greatly decreased the Vj sensitivity of Cx50 channels, and increased that of Cx50-D3N channels. CO2 also affected the kinetics of Vj dependent inactivation of junctional current (Ij), decreasing the gating speed of Cx50 channels and increasing that of Cx50-D3N channels. In addition, the D3N mutation increased the CO2 sensitivity of chemical gating such that even CO2 concentrations as low as 2.5% significantly lowered junctional conductance (Gj). With Cx50 channels Gj dropped by 78% with a drop in intracellular pH (pHi) to 6.83, whereas with Cx50-D3N channels Gj dropped by 95% with a drop in pHi to just 7.19. We have previously hypothesized that the way in which Vj gating reacts to CO2 might be related to connexin’s gating polarity. This hypothesis is confirmed here by evidence that the D3N mutation inverts the gating polarity as well as the effect of CO2 on Vj gating sensitivity and speed. cell communication; lens; gap junctions; chemical gating; channel gating; Xenopus oocytes
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号