首页 | 本学科首页   官方微博 | 高级检索  
     


Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B
Authors:Fernández-Higuero José Ángel  Acebrón Sergio P  Taneva Stefka G  Del Castillo Urko  Moro Fernando  Muga Arturo
Affiliation:Biophysics Unit (Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), Bilbao, Spain.
Abstract:ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.
Keywords:Allosteric Regulation   Chaperone Chaperonin   Heat Shock Protein   Nucleotide   Protein Folding   ClpB
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号