首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies
Authors:Kahlen Katrin  Stützel Hartmut
Institution:Institute of Biological Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
Abstract:

Background and Aims

Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data.

Methods

Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m2 m?2) or (b) partial LAI, the cumulative leaf area per m2 ground, where leaf area per m2 ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density.

Key Results

In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model.

Conclusions

This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.
Keywords:Leaf area  plant density  functional–structural plant model  Cucumis sativus  cucumber  red : far-red ratio  photosynthetically active radiation  plant architecture  internode length  model  canopy  light
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号