首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sphingosine 1-phosphate protects mouse extensor digitorum longus skeletal muscle during fatigue
Authors:Danieli-Betto Daniela  Germinario Elena  Esposito Alessandra  Megighian Aram  Midrio Menotti  Ravara Barbara  Damiani Ernesto  Libera Luciano Dalla  Sabbadini Roger A  Betto Romeo
Institution:Department of Human Anatomy and Physiology, University of Padua, Via Marzolo 3, 35131 Padua, Italy. daniela.danieli@unipd.it
Abstract:Sphingomyelin derivatives exert various second messenger actions in numerous tissues. Sphingosine (SPH) and sphingosine 1-phosphate (S1P) are two major sphingomyelin derivatives present at high levels in blood. The aim of the present work was to investigate whether S1P and SPH exert relevant actions in mouse skeletal muscle contractility and fatigue. Exogenous S1P and SPH administration caused a significant reduction of tension decline during fatigue of extensor digitorum longus muscle. Final tension after the fatiguing protocol was 40% higher than in untreated muscle. Interestingly, N,N-dimethylsphingosine, an inhibitor of SPH kinase (SK), abolished the effect of supplemented SPH but not that of S1P, suggesting that SPH acts through its conversion to S1P. Moreover, SPH was not effective in Ca2+-free solutions, in agreement with the hypothesis that SPH action is dependent on its conversion to S1P by the Ca2+-requiring enzyme SK. In contrast to SPH, S1P produced its positive effects on fatigue in Ca2+-free conditions, indicating that S1P action does not require Ca2+ entry and most likely is receptor mediated. The effects of S1P could be ascribed in part to its ability to prevent the reduction (–20 mV) of action potential amplitude caused by fatigue. In conclusion, these results indicate that extracellular S1P has protective effects during the development of muscle fatigue and that the extracellular conversion of SPH to S1P may represent a rheostat mechanism to protect skeletal muscle from possible cytotoxic actions of SPH. sphingosine kinase; action potential; sphingosine
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号