Formation and structural determinants of multi-stranded guanine-rich DNA complexes |
| |
Authors: | Poon K Macgregor R B |
| |
Affiliation: | Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Ontario, Canada. |
| |
Abstract: | We have investigated the complexes formed by oligonucleotides with the general sequence d(T15,Gn), where n = 4-15. Two distinct classes of structures are formed, namely, the four-stranded tetraplex and frayed wires. Frayed wires differ from four-stranded tetraplexes in both strand association stoichiometry and the ability of dimethyl sulfate to methylate the N7 position of guanine. Thus, it appears that these two guanine-rich multistranded assemblies are stabilised by different guanine-guanine interactions. The number of contiguous guanine residues determines which of the complexes is favoured. Based on the stoichiometry of the associated species and the accessibility of the N7 position of guanine to methylation we have found that oligonucleotides with smaller number of contiguous guanines; n = 5-8, form primarily four-stranded tetraplex. Oligonucleotides with larger numbers of contiguous guanines adapt primarily the frayed wire structure. The stability of the complexes formed by this series of oligonucleotides is determined by the number and arrangement of the guanines within the sequences. We propose that the formation of the two types of complex proceed by a parallel reaction pathways that may share common intermediates. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|