首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon, Water, and Energy Exchanges of a Hybrid Poplar Plantation During the First Five Years Following Planting
Authors:Tiebo Cai  David T Price  Alberto L Orchansky  Barb R Thomas
Institution:1. Natural Resources Canada, Northern Forestry Centre, 5320-122 Street NW, Edmonton, Alberta, T6H 3S5, Canada
2. Micrometeorology Consultant, Edmonton, Alberta, Canada
3. Alberta-Pacific Forest Industries Inc, Boyle, Alberta, T0A 0M0, Canada
4. Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta, T6G 2H1, Canada
Abstract:Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety ??Walker??) established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (R e) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R 10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21?g?C?m?2?y?1 in year 1 to 469?g?C?m?2?y?1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330?g?C?m?2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5?years likely exceeded 630?g?C?m?2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and R e were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281?mm in year 1 to 323?mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号