首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2021年   2篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2008年   3篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
Floral development was compared with scanning electron microscopy in 12 Australian species of Hibbertia representing most of its morphological variation, and in the related Adrastaea (Dilleniaceae). Calyx and corolla arise in quincuncial helices in radially symmetrical species, while the petals initiate unidirectionally from one side in zygomorphic species. Stamen number (3-200+) proliferates by centrifugal addition of individual primordia or by innovations of common primordia and ring meristems. Common primordia arise in single-stamen positions alternately with petals, and each produces one to several stamens centrifugally that remain attached to a shared base and form a stamen fascicle. A ring meristem in Adrastaea initiates a whorl of five stamens, alternate with the first stamens but outside their whorl. In radially symmetrical species of Hibbertia, a first ring of stamens is supplemented centrifugally by additional stamens on a meristem ring. The first stamens in zygomorphic species of Hibbertia initiate as a terminal ridge on the floral apex, with subsequent stamens added centrifugally on one side and two carpels initiated on the opposite side. The carpels arise as a simultaneous ring in radially symmetrical flowers, or as a simultaneous pair in zygomorphic species. Staminodial presence is viewed as of minor significance. Four pollinator syndromes are proposed for Hibbertia, related to differing floral architecture.  相似文献   
3.
A comparative developmental study of flowers was carried out using epi-illumination light microscopy on four genera of Lamiaceae (Nepeta, Rosmarinus, Salvia, andZiziphora), representing all three subtribes of Mentheae. All species examined share unidirectional (adaxial to abaxial) sepal initiation, except Rosmarinus, which has the reverse unidirectional sequence, starting abaxially. Initiated but suppressed bracteoles were detected only in Rosmarinus. In Rosmarinus, Salvia, and Ziziphora, initiation of petals and stamens proceeds unidirectionally from the abaxial side. Floral initiation of Nepeta has bidirectional inception of petals and unidirectional stamen initiation from the adaxial side. Temporal overlap in organ initiation between petal and stamen whorls occurs in all taxa, though this feature is more prominent in Rosmarinus. Significant structural and developmental features that distinguish the four genera include: (1) polysymmetric calyx tube, highly tomentose corolla and deeply four-partitioned ovary in Nepeta; (2) monosymmetric two-lipped calyx and shallowly four-partitioned ovary in Ziziphora; and (3) suppression of adaxial stamens in Salvia and Rosmarinus. Adaxial stamens are absent from Rosmarinus, but reduced stamens remain as staminodia in Salvia. In a phylogenetic context, the late monosymmetry of Nepeta and very early monosymmetry of Rosmarinus could both be regarded as derived conditions compared with the early monosymmetry ofSalvia and Ziziphora.  相似文献   
4.
5.
  相似文献   
6.
A gynostemium, comprising stamen filaments adnate to a syncarpous style, occurs in only threc groups of monocots: the large family Orchidaceae (Asparagales) and two small genera Pauridia (Hypoxidaceae: Asparagales) and Corsia (Corsiaceae, probably in Liliales), all epigynous taxa. Pauridia has actinomorphic (polysymmetric) flowers, whereas those of Corsia and most orchids are strongly zygomorphic (monosymmetric) with a well-differentiated labellum. In Corsia the labellum is formed from the outer median tepal (sepal), whereas in orchids it is formed from the inner median tepal (petal) and is developmentally adaxial (but positionally abaxial in orchids with resupinate flowers). Furthermore, in orchids zygomorphy is also expressed in the stamen whorls, in contrast to Corsia. In Pauridia a complete stamen whorl is suppressed, but the 'lost' outer whorl is fused to the style. The evolution of adnation and zygomorphy are discussed in the context of the existing phylogenetic framework in monocotyledons. An arguably typological classification of floral terata is presented, focusing on three contrasting modes each of peloria and pseudopeloria. Dynamic evolutionary transitions in floral morphology are assigned to recently revised concepts of heterotopy (including homeosis) and heterochrony, seeking patterns that delimit developmental constraints and allow inferences regarding underlying genetic controls. Current evidence suggests that lateral heterotopy is more frequent than acropetal heterotopy, and that full basipetal heterotopy does not occur. Pseudopeloria is more likely to generate a radically altered yet functional perianth, but is also more likely to cause acropetal modification of the gynostemium. These comparisons indicate that there are at least two key genes or sets of genes controlling adnation, adaxial stamen suppression and labellum development in lilioid monocots; at least one is responsible for stamen adnation to the style (i.e. gynostemium formation), and another controls adaxial stamen suppression and adaxial labellum formation in orchids. Stamen adnation to the style may be a product of over-expression of the genes related to epigyny (i.e. a form of hyper-epigyny). If, as seems likely, stamen-style adnation preceded zygomorphy in orchid evolution, then the flowers of Pauridia may closely resemble those of the immediate ancestors of Orchidaceae, although existing molecular phylogenetic data indicate that a sister-group relationship is unlikely. The initial radiation in Orchidaceae can be attributed to the combination of hyper-epigyny, zygomorphy and resupination, but later radiations at lower taxonomic levels that generated the remarkable species richness of subfamilies Orchidoideae and Epidendroideae are more likely to reflect more subtle innovations that directly influence pollinator specificity, such as the development of stalked pollinaria and heavily marked and/or spur-bearing labella.  相似文献   
7.
Comparative floral anatomy of Pontederiaceae   总被引:1,自引:0,他引:1  
Floral anatomy is described in eight species (representing five genera) of Pontederiaceae, and floral ontogeny is described in Pontederia cordata. The results are assessed in the context of recent phylogenetic work on Pontederiaceae, which indicates that the unilocular ovary condition has been achieved by two different, non-homologous routes in Pontederiaceae: via loss of interlocular septa in Heteranthera and Hydrothrix , and via pseudomonomery in Pontederia , which has a single fertile carpel. Absence of septal nectaries has evolved more than once in Pontederiaceae, at least in Heterantha and Monochoria , probably due to a transfer of the insect reward from nectar to pollen in these taxa. The presence of an elliptical or linear unvascularized appendage on the abaxial outer stamen in Monochoria is also probably correlated with enantiostyly. In Pontederia , air spaces in the ovary wall are modified into canals, each with a ring of apparently secretory epithelial cells.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 395–408.  相似文献   
8.
9.
A new species of Gesneriaceae, Paraboea trisepala W.H.Chen & Y.M.Shui, from a karst cave in Guangxi, China is described and illustrated. The new species differs from other species of Paraboea by its three‐lobed calyx. Variation in flower and inflorescence architecture was observed under cultivation. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 681–688.  相似文献   
10.
In Asterids, specific expression of CYC-like genes in the corresponding regions promotes or reduces dorsal petal growth and aborts stamen development. In Rosids, however, the reduced or enlarged dorsal petals are not accompanied by the abortion of stamens, which implies that the function of CYC-like genes in regulating petal growth and stamen development might be independently recruited. To address this, we investigated the function of the PhCYC1C gene in Primulina heterotricha Y. Dong & Y. Z. Wang on petal growth and stamen development by overexpressing it in two different transformation systems, that is, Arabidopsisbelonging to Rosids and tobacco located in Asterids. The results showed that overexpression of PhCYC1C reduced petal sizes in both tobacco and Arabidopsistransgenic plants mainly by repressing cell expansion, indicating its conserved function in determining petal growth between Asterids and Rosids. However, the fertility of both tobacco and Arabidopsis stamens was not affected at all. Given that strong expression signals of PhCYC1C are detected in both tobacco andArabidopsis stamens and CYC-like genes actually function to repress stamen development in Lamiales, we suggest that the CYC-like gene-associated regulatory network for controlling stamen development might have not established in Rosids as well as in early evolution of Asterids, but evolved as Asterids proceeded further. Our results provide valuable information on the conservation of CYC-like genes' function in controlling corolla asymmetry and the divergence of their function in determining stamen abortion in angiosperms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号