首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
  2017年   2篇
  2016年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Biosynthesis of complex natural products like polyketides and nonribosomal peptides using Escherichia coli as a heterologous host provides an opportunity to access these molecules. The value in doing so stems from the fact that many compounds hold some therapeutic or other beneficial property and their original production hosts are intractable for a variety of reasons. In this work, metabolic engineering and induction variable optimization were used to increase production of the polyketide‐nonribosomal peptide compound yersiniabactin, a siderophore that has been utilized to selectively remove metals from various solid and aqueous samples. Specifically, several precursor substrate support pathways were altered through gene expression and exogenous supplementation in order to boost production of the final compound. The gene expression induction process was also analyzed to identify the temperatures and inducer concentrations resulting in highest final production levels. When combined, yersiniabactin production was extended to ~175 mg L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1412–1417, 2016  相似文献   
2.
Yersiniabactin (Ybt) is a metal‐binding natural product that has been re‐purposed for water treatment. The early focus of this study was the characterization of metal binding breadth attributed to Ybt. Using LC‐MS analysis of water samples exposed to aqueous and surface‐localized Ybt, quantitative assessment of binding was completed with metals that included Pd2+, Mg2+, and Zn2+. In total, Ybt showed affinity for 10 metals. Next, Ybt‐modified XAD‐16N resin (Ybt‐XAD) was utilized to quantify the affinity for metal removal, showing a rank order of Fe3+ > Ga3+ > Ni2+ > Cu2+ > Cr2+≈Zn2+ > Co2+ > Pd2+ > Mg2+ > Al3+, and in the applied treatment of wastewater from a local precious metal plating company, showing selective removal of nickel from the aqueous effluent. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1548–1554, 2017  相似文献   
3.
Yersiniabactin (Ybt) is a mixed nonribosomal peptide‐polyketide natural product that binds a wide range of metals with the potential to impact processes requiring metal retrieval and removal. In this work, we substantially improved upon the heterologous production of Ybt and an associated anthranilate analog through systematic screening and optimization of culture medium components. Specifically, a Plackett‐Burman design‐of‐experiments methodology was used to screen 22 components and to determine those contributing most to siderophore production. L‐cysteine, L‐serine, glucose, and casamino acids significantly contributed to the production of both compounds. Using this approach together with metabolic engineering of the base biosynthetic process, Ybt and the anthranilate analog titers were increased to 867 ± 121 mg/L and 16.6 ± 0.3 mg/L, respectively, an increase of ~38 and ~79‐fold relative to production in M9 medium. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1193–1200, 2017  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号