首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6795篇
  免费   279篇
  国内免费   454篇
  2023年   63篇
  2022年   107篇
  2021年   137篇
  2020年   112篇
  2019年   162篇
  2018年   163篇
  2017年   127篇
  2016年   147篇
  2015年   189篇
  2014年   336篇
  2013年   546篇
  2012年   281篇
  2011年   344篇
  2010年   279篇
  2009年   307篇
  2008年   372篇
  2007年   401篇
  2006年   309篇
  2005年   294篇
  2004年   257篇
  2003年   244篇
  2002年   212篇
  2001年   179篇
  2000年   167篇
  1999年   156篇
  1998年   135篇
  1997年   94篇
  1996年   89篇
  1995年   98篇
  1994年   78篇
  1993年   84篇
  1992年   108篇
  1991年   91篇
  1990年   59篇
  1989年   51篇
  1988年   45篇
  1987年   52篇
  1986年   28篇
  1985年   88篇
  1984年   79篇
  1983年   61篇
  1982年   58篇
  1981年   44篇
  1980年   50篇
  1979年   40篇
  1978年   42篇
  1977年   34篇
  1976年   35篇
  1975年   31篇
  1973年   24篇
排序方式: 共有7528条查询结果,搜索用时 15 毫秒
1.
Abstract A mutant strain of Schizosaccharomyces pombe lacking dipeptidyl aminopeptidase yspI was isolated from a strain already defective in aminopeptidase activity by means of a staining technique with the chromogenic substrate ala-pro-4-methoxy-β-naphthylamide to screen colonies for the absence of the enzyme. The defect segregated 2+ :2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Gene dosage experiments indicated that the mutation resides in the structural gene of dipeptidyl aminopeptidase yspI, dpa 1+. The dpa 1+ gene was located on chromosome III by using l m- fluorophen-ylalanine-induced haploidization and mitotic analysis. dpa1 mutants did not show any obvious phenotype under a variety of conditions tested.  相似文献   
2.
3.
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
Highlights
  • •XL-MS reveals new PPIs in yeast mitochondria under glycerol and glucose condition.
  • •Significant but limited results from quantitative XL-MS experiments.
  • •Ndi1 participates in a CIII2CIV2 respiratory supercomplex.
  • •Min8 promotes assembly of Cox12 into an intermediate complex IV.
  相似文献   
4.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
5.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
6.
Cultural adherent human mononuclear cells produce factor(s) which stimulate the release of calcium from new-born mouse calvaria in organ culture. This stimulation of bone resorption is accompanied by an inhibition of the incorporation of [3H]proline into collagen which is independent of increased prostaglandin production by the bone. When human osteoblast-like cells are treated with conditioned medium from human mononuclear cells, collagen accounts for a decreased proportion of the protein synthesised. This effect on matrix synthesis is not accompanied by an inhibitory action of the monocyte-conditioned medium preparations on net cell proliferation. In human osteoblast-like cell cultures, partially purified human interleukin 1 also inhibits the production of the bone-specific protein osteocalcin in a dose-dependent fashion. These observations are consistent with the hypothesis that products of human monocytes similar to, or identical with, human interleukin 1 may be important regulators of bone metabolism and may contribute to the bone loss seen in diseases such as chronic rheumatoid arthritis.  相似文献   
7.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
8.
9.
10.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号