首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2020年   1篇
  2013年   1篇
  2007年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
  1. Animal behavior is elicited, in part, in response to external conditions, but understanding how animals perceive the environment and make the decisions that bring about these behavioral responses is challenging.
  2. Animal heads often move during specific behaviors and, additionally, typically have sensory systems (notably vision, smell, and hearing) sampling in defined arcs (normally to the front of their heads). As such, head‐mounted electronic sensors consisting of accelerometers and magnetometers, which can be used to determine the movement and directionality of animal heads (where head “movement” is defined here as changes in heading [azimuth] and/or pitch [elevation angle]), can potentially provide information both on behaviors in general and also clarify which parts of the environment the animals might be prioritizing (“environmental framing”).
  3. We propose a new approach to visualize the data of such head‐mounted tags that combines the instantaneous outputs of head heading and pitch in a single intuitive spherical plot. This sphere has magnetic heading denoted by “longitude” position and head pitch by “latitude” on this “orientation sphere” (O‐sphere).
  4. We construct the O‐sphere for the head rotations of a number of vertebrates with contrasting body shape and ecology (oryx, sheep, tortoises, and turtles), illustrating various behaviors, including foraging, walking, and environmental scanning. We also propose correcting head orientations for body orientations to highlight specific heading‐independent head rotation, and propose the derivation of O‐sphere‐metrics, such as angular speed across the sphere. This should help identify the functions of various head behaviors.
  5. Visualizations of the O‐sphere provide an intuitive representation of animal behavior manifest via head orientation and rotation. This has ramifications for quantifying and understanding behaviors ranging from navigation through vigilance to feeding and, when used in tandem with body movement, should provide an important link between perception of the environment and response to it in free‐ranging animals.
  相似文献   
2.
The tethered and free flight of Manduca sexta were studied during period 1,2, and 0 times normal gravity (g) produced in an aeroplane by flying through parabolic trajectories. Moths in tethered flight did not change their aerodynamic output in response to increases or decreases in gravity. Some moths in free flight at 0 g maintained a position in the box by flying against a surface, or into the angle between two surfaces. In the absence of gravity as an orienting stimulus, the positive dorsophotic response to light was dominant. As the period of 0 g continued, moths were increasingly likely to periodically reduce the amplitude of their wingbeat and/or stop flying, for the equivalent of a few wingbeats. Only at 0 g, moths very occasionally spread their wings and floated freely for a few seconds. At 0 g moths retained control of rolling and yawing movements but stability in pitch was greatly reduced or absent.  相似文献   
3.
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.  相似文献   
4.
Data mining techniques are highly useful in the study of various medical signals and images in order to obtain useful information to better predict the diagnosis or prognosis or treatment options for the patient. Study of the human walking pattern helps us understand the variability of motion during activities such as high performance walking and normal walking. A comparison of the parameters quantifying this variability in motion in normal young and elderly subjects and the subjects who need support will aid in better understanding of the relationship among walking patterns, age and disabilities. In this study, we measured the tri-axial acceleration along three directions: anteroposterior, lateral and vertical. We also measured gyrational pitch, roll and yaw. These parameters were obtained using sensors attached to the back, left thigh and right thigh of the three classes of subjects (normal, elderly and adults with support) during the three types of exercises: 10-m normal walk, 10-m high performance walk and stepping. These recorded signals were then subjected to wavelet packet decomposition, and three entropies, namely approximate entropy and two bispectral entropies, were obtained from the resultant wavelet coefficients. On analysing these entropies, we could observe the following: (1) the entropy steadily decreases with the increase in age and with the presence of impairments, and (2) the entropy decreases among all the three types of exercises, namely normal walking and high performance walking. We feel that the results of this work can help in the design of supporting devices for elderly subjects.  相似文献   
5.
Abstract The optomotor yaw response of the desert locust, Schistocerca gregaria (Forsk.), was investigated under open- and closed-loop conditions. When flying tethered in the centre of a vertically striped hollow sphere, the polarity of response of the locust was always the same as the stimulus. The response, therefore, appears suitable to stabilize body posture against passive rotations around the yaw-axis in free flight. Responses were induced by contrast frequencies up to 150 Hz with a maximum of amplitude at about 20 Hz. The characteristic curve, measured between 0.3 and 160 Hz, is widened up towards higher frequencies as compared with those of bees and flies.
Variability was the most striking feature in the locust's yaw response. The amplitude of modulation not only varied greatly between individuals but also changed with the same visual stimulus in the course of an experiment. We therefore suppose that the locust's turning behaviour is subject to gain control mechanisms and that spontaneous gain modulations are responsible for the observed variability in the stimulus-response conversion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号