首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2008年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a ‘suicide’ gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil, an inhibitor of DNA synthesis and RNA function. Over 150 studies of CD-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of CD are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study, we stabilized and extended the half-life of yeast CD (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in stability, as well as a more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号