首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2013年   3篇
  2011年   1篇
  2006年   1篇
  2001年   3篇
  2000年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
研究一株新的嗜热拟青霉J18的固体发酵产木聚糖酶的纯化和性质。固体发酵的粗酶液经硫酸铵沉淀、凝胶过滤层析和离子交换层析得到了一种分子量约为26 kDa的电泳纯木聚糖酶,酶活力回收率为33.5%,纯化了5.27倍。该木聚糖酶具有很好的温度和pH稳定性,在pH7.0~pH 9.0下,60℃处理24 h,酶活力能保存80%以上。该酶水解玉米芯木聚糖生成以木二糖、木三糖和木四糖为主的低聚木糖,薄层层析分析表明不含木糖,适合生产低聚木糖。  相似文献   
2.
An extracellular β-xylosidase from a newly isolated Fusarium verticillioides (NRRL 26518) was purified to homogeneity from the culture supernatant by concentration by ultrafiltration using a 10,000 cut-off membrane, ammonium sulfate precipitation, DEAE Bio-Gel A agarose column chromatography and SP-Sephadex C-50 column chromatography. The purified β-xylosidase (specific activity, 57 U/mg protein) had a molecular weight (mol. wt.) of 94,500 and an isoelectric point at pH 7.8. The optimum temperature and pH for action of the enzyme were 65°C and 4.5, respectively. It hydrolyzes xylobiose and higher xylooligosaccharides but is inactive against xylan. The purified β-xylosidase had a K m value of 0.85 mM (p-nitrophenol-β-D-xyloside, pH 4.5, 50°C) and was competitively inhibited by xylose with a K i value of 6 mM. It did not require any metal ion for activity and stability. Journal of Industrial Microbiology & Biotechnology (2001) 27, 241–245. Received 20 May 2001/ Accepted in revised form 06 July 2001  相似文献   
3.
Xylooligomer solutions from autohydrolysis of corn cobs were subjected to an enzymatic post-hydrolysis using commercial enzymes with xylanolytic activity. The effect of temperature and pH on the conversion of xylooligomers into xylose was assessed at low enzyme to substrate ratio. Further experiments to evaluate the influence of enzyme loading were carried out. Balanced mixtures of selected formulations were also used. The xylose solutions obtained by coupling autohydrolysis and enzymatic post-hydrolysis stages contained up to 24 g xylose/l, were free of sugar-dehydration products and, by selecting the enzyme dosage and activities, the acetic acid concentration could be reduced, thus improving their potential fermentability. Regardless of the endo- and exo-activity loadings, the maximum conversion achieved either with single or with mixed commercial formulations, was 80% of the theoretical. This fact suggests the existence of a remaining fraction of substituted xylooligomers accounting for 20% of the initial xylan. A close relationship between deacetylation and xylose generation was also observed.  相似文献   
4.
Abstract

Lignocellulosic biomass (LB) is the renewable feedstock for the production of fuel/energy, feed/food, chemicals, and materials. LB could also be the versatile source of the functional oligosaccharides, which are non-digestible food ingredients having numerous applications in food, cosmetics, pharmaceutical industries, and others. The burgeoning functional food demand is expected to be more than US$440 billion in 2022. Because of higher stability at low pH and high temperature, oligosaccharides stimulate the growth of prebiotic bifidobacteria and lactic acid bacteria. Xylooligosaccharides (XOS) are major constituents of oligosaccharides consisting of 2–7 xylose monomeric units linked via β-(1,4)-linkages. XOS can be obtained from various agro-residues by thermochemical pretreatment, enzymatic or chemoenzymatic methods. While thermochemical methods are fast, reproducible, enzymatic methods are substrate specific, costly, and produce minimum side products. Enzymatic methods are preferred for the production of food grade and pharmaceutically important oligosaccharides. XOS are potent prebiotics having antioxidant properties and enhance the bio-adsorption of calcium and improving bowel functions, etc. LB can cater to the increasing demand of oligosaccharides because of their foreseeable amount and the advancements in technology to recover oligosaccharides. This paper summarizes the methods for oligosaccharides production from LB, classification, and benefits of oligosaccharides on human health.  相似文献   
5.
从土样中筛选出一株产木聚糖酶的青霉,该青霉所产木降糖酶具有很高的木二糖形成活力,经鉴定为顶青霉,其木聚糖酶的合成与分泌受木聚糖等木糖苷类物质的诱导,麸皮对其木聚糖酶的合成也有促进作用,优化产酶液体培养主要成分的配比为:麸皮:玉米芯木聚糖:玉米芯粉;蛋白胨(或尿素)=1:1:1:0.6(0.4),摇瓶96h达到最大酶活,最高木聚糖酶活达到289.3U/ml,该菌所产木聚糖酶的最适作用条件为45-50度,PH4.4,在PH4.4-8.0范围内稳定。  相似文献   
6.
Xylanases produce xylooligosaccharides from xylan and have thus attracted increasing attention for their usefulness in industrial applications. Previously, we demonstrated that the GH11 xylanase XynLC9 from Bacillus subtilis formed xylobiose and xylotriose as the major products with negligible production of xylose when digesting corncob-extracted xylan. Here, we aimed to improve the catalytic performance of XynLC9 via protein engineering. Based on the sequence and structural comparisons of XynLC9 with the xylanases Xyn2 from Trichoderma reesei and Xyn11A from Thermobifida fusca, we identified the N-terminal residues 5-YWQN-8 in XynLC9 as engineering hotspots and subjected this sequence to site saturation and iterative mutagenesis. The mutants W6F/Q7H and N8Y possessed a 2.6- and 1.8-fold higher catalytic activity than XynLC9, respectively, and both mutants were also more thermostable. Kinetic measurements suggested that W6F/Q7H and N8Y had lower substrate affinity, but a higher turnover rate (kcat), which resulted in increased catalytic efficiency than WT XynLC9. Furthermore, the W6F/Q7H mutant displayed a 160% increase in the yield of xylooligosaccharides from corncob-extracted xylan. Molecular dynamics simulations revealed that the W6F/Q7H and N8Y mutations led to an enlarged volume and surface area of the active site cleft, which provided more space for substrate entry and product release and thus accelerated the catalytic activity of the enzyme. The molecular evolution approach adopted in this study provides the design of a library of sequences that captures functional diversity in a limited number of protein variants.  相似文献   
7.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally.  相似文献   
8.
Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated xylo-oligosaccharides and complex non-soluble acetylglucuronoxylan. Both enzymes performed optimally at pH 7.0 and 40 °C.Axe2 has a clear preference for acetylated xylo-oligosaccharides (AcXOS) with a high degree of substitution and Axe3 does not show such preference. Axe3 has a preference for large AcXOS (DP 9-12) when compared to smaller AcXOS (especially DP 4-7) while for Axe2 the size of the oligomer is irrelevant. Even though there is difference in substrate affinity towards acetylated xylooligosaccharides from Eucalyptus wood, the final hydrolysis products are the same for Axe2 and Axe3: xylo-oligosaccharides containing one acetyl group located at the non-reducing xylose residue remain as examined using MALDI-TOF MS, CE-LIF and the application of an endo-xylanase (GH 10).  相似文献   
9.
酶法制备低聚木糖中木二糖的提纯与色谱鉴定   总被引:11,自引:0,他引:11  
半纤维素经木聚糖酶水解得到混合的低聚木糖,用葡聚糖凝胶柱SephadexG-10层析分离后,出现四个组分峰,经高效液相色谱分析鉴定,其中3号峰为木二糖纯组分峰.结果表明:利用φ2.5 cm×120 cm凝胶柱,以蒸馏水为流动相,流速为10ml/h,在室温下,可以分离出高纯度的木二糖.  相似文献   
10.
Attempts were devoted to use Streptomyces aureofaciens and Streptomyces erythreus, the antibiotics producers as sources for the biosynthesis of cobalamine. The constituents of the fermentation medium and the strain play an important role in the biosynthesis of vitamin B12. The same strain produced different amounts of antibiotic and vitamin on the two different constitutive media. The increase of the phosphorus concentration in the fermentation medium—within limits—increased the vitamin B12 biosynthesis. The optimal concentration of phosphorus favourable for the synthesis of cobalamine was inhibitive for the antibiotic production. The phosphorus level in the fermentation medium plays an important role in the metabolism of carbohydrate and consequently on the biosynthesis of antibiotics. Low concentration of 5,6-dimethylbenzimidazole (cobalamine precursor) in the presence of suitable phosphorus induced the microorganism to increase its biosynthetic potentiality for the vitamin B12 production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号