首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1281篇
  免费   129篇
  国内免费   37篇
  2024年   2篇
  2023年   19篇
  2022年   21篇
  2021年   41篇
  2020年   38篇
  2019年   32篇
  2018年   42篇
  2017年   30篇
  2016年   39篇
  2015年   42篇
  2014年   47篇
  2013年   68篇
  2012年   41篇
  2011年   48篇
  2010年   30篇
  2009年   63篇
  2008年   55篇
  2007年   61篇
  2006年   63篇
  2005年   61篇
  2004年   37篇
  2003年   52篇
  2002年   36篇
  2001年   31篇
  2000年   48篇
  1999年   44篇
  1998年   35篇
  1997年   34篇
  1996年   37篇
  1995年   37篇
  1994年   34篇
  1993年   28篇
  1992年   18篇
  1991年   23篇
  1990年   17篇
  1989年   16篇
  1988年   15篇
  1987年   8篇
  1986年   9篇
  1985年   14篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1972年   1篇
排序方式: 共有1447条查询结果,搜索用时 15 毫秒
1.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   
2.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
3.
Cardiac glycoside transport was investigated on the organ and whole plant level. Uptake experiments were carried out with shoot and root cultures of Digitalis lanata. In both systems primary cardenolides, i.e., those with a terminal glucose in their oligosaccharide side chain, were taken up against their concentration gradient, whereas the glucose-free secondary cardenolides were not. Active uptake of primary cardenolides was further evidenced by KCN inhibition of uptake. Using plantlets grown in vitro the long-distance transport of primary cardenolides from the leaves to the roots was demonstrated. Cardenolides were also detected in etiolated leaves, induced on plants with green leaves, which are supposed to be unable to synthezise cardenolides de novo, providing further evidence for long-distance transport. Several primary cardenolides were detected in the honeydew excreted by aphids fed on Digitalis lanata leaves, indicating that the phloem is a transporting tissue for cardenolides. On the other hand, the xylem sap obtained by applying the pressure-chamber technique was cardenolide-free. It was concluded that in Digitalis primary cardenolides serve as both the transport and the storage form of cardenolides. After their synthesis they are either stored in the vacuoles of the source tissue or loaded into the sieve tubes, from which they are unloaded at other sites where they are trapped in the vacuoles of the respective sink tissue.  相似文献   
4.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
5.
Two 2 m3 plots of soil were prepared to different water contents and each isolated from surrounding soil by impermeable plastic material. Nine sorghum varieties were germinated in the plots and allowed to grow without further watering. Time-to-wilt after emergence was measured, and several parameters relating to water flow of the seedling and nodal roots were determined. There was a good positive correlation between both seminal root and nodal root relative conductvity and time-to-wilt. In a second experiment, plants were germinated and grown in pots, and after two weeks of growth without further watering were inspected for survival in the unwilted state. The per cent survival was calculated. There was a negative correlation of seminal root relative conductivity with per cent survival, and a high negative correlation of the number of seminal roots with per cent survival. It is concluded that high relative conductivity indicates drought resistance if the plants are growing with less restricted roots as in open soil, while if the plants are grown in pots the reverse is the case. Experiments linking root conductivity with survival conducted in pots are poor predictors of performance in less restricted rooting conditions.  相似文献   
6.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   
7.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   
8.
The interactive effect of low P supply (0, 10, 20 and 40 M) and plant age on nodule number, mass and functioning (ureide analysis technique), vegetative growth and pod production were investigated in glasshouse-grown nodulated cowpea (Vigna unguiculata L.cv. Kausband) in sand culture. Compared with 40 M P, P stress (0 M P) or very low (10 M P) supply markedly impaired nodulation, allantoin and amino-N concentrations and weight of N solutes in xylem exudates. Consequently, P stress reduced top growth and pod yields by 48 and 90%, respectively. N solutes in xylem exudates and total plant N assayed by Kjeldahl technique (as estimates of N2 fixation) responded similarly to P supply. However, the relative ureide index [(ureide-N/ureide N+amino-N)×100] remained constant (99%), irrespective of P supply, indicating the plants' complete dependency on symbiosis for growth, without implying that growth was markedly increased by N2 fixation. Although P concentrations in plant tops, roots and nodules increased with P supply, N concentrations in these plant tissues were unaffected by P supply. The concentrations of N and P in the nodules were 2–2 1/2 times higher than in plant tops. P application interacted strongly with plant age, with the largest P effect evidently achieved at the early podding stage. The significance and implications of these results are discussed.  相似文献   
9.
Aedes aegypti mosquitoes salivate during intradermal probing of vertebrate prey before ingesting blood (Griffiths and Gordon 1952). Nonsalivating mosquitoes locate blood more slowly; this difference was ascribed to an anti-platelet activity found in the mosquito's saliva (Ribeiro et al. 1984). Mosquitoes infected with Plasmodium gallinaceum suffer pathology that specifically impairs saliva anti-hemostatic activity but without reducing volume of output (Rossignol et al. 1984). The complexity of the feeding apparatus of mosquitoes provides opportunity for a variety of strategies in which pathogens may produce specific lesions that enhance their transmission, but the variables that affect the duration of probing by mosquitoes have not been defined. We sought to resolve this complexity by identifying and quantifying relevant parameters of probing behavior. Mosquitoes thrust their mouthparts repeatedly through their host's skin while searching for blood. Female A. aegypti thrust at 7-sec intervals. If this search results in success, feeding ensues. Alternatively, the mosquito "desists," the mouthparts stylets are withdrawn, and the mosquito attempts to feed at another site. Even after previous desistance, the probability of finding blood remains undiminished. Functions for the probability of feeding success and desistance over time were derived using data from observations on 300 mosquitoes. The probability of feeding success was interpreted as being a function of the density of vessels in the skin, their geometric distribution, and the conditions locally affecting hemostasis. During each probe, the probability of desisting increased linearly with time, and after desisting once, mosquitoes tended to desist more rapidly. A model was developed incorporating Monte Carlo simulation which closely fit observed data. By changing values for the several parameters of the probability functions, we predicted modes in which parasites may manipulate their hosts to enhance transmission, both to and from the vector. In particular, parasite strategies in the vector would include induced salivary pathology; increased duration of probing thrusts; decreased desistance time; and inhibited phagoreception. Predicted parasite strategies in the reservoir host would include increased skin vascular volume and impaired host hemostasis. Our model supports the hypothesis of a mutualistic interaction of malaria and mosquitoes.  相似文献   
10.
Abstract We tested the hypothesis that electrogenic ion pumps, working at the parenchyma symplast/xylem interface of pea hypocotyls, provide the driving force for K+ uptake from the xylem. Solutions of known composition were perfused through a hypocotyl segment. The K+ activity of the solution flowing out of the xylem (K+out) increased (i.e. K+ uptake decreased) when aerobic respiration was inhibited by lack of O2, and this was preceded by a decrease in Vpx (electrical potential difference between parenchyma symplast and xylem). Perfusion with auxin (1AA) and fusicoccin (FC) stimulated the electrogenic activity of the ‘xylem pumps’ (111 and 205% respectively) and stimulated uptake of K + from the xylem (with 71% and 29% respectively). The close correlation between xylem pump activity and K+ uptake corroborated the aforementioned hypothesis. Interestingly, inhibition of pump activity by anoxia was incomplete in the presence of FC. It is thought that FC increases the affinity of the ATP-requiring xylem pump for ATP, thus ensuring that ATP production during fermentation is sufficient to fuel the pump in the absence of O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号