首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
排序方式: 共有3条查询结果,搜索用时 7 毫秒
1
1.
1. Larvae of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) display a convergently evolved sit‐and‐wait hunting strategy of building pitfall traps in sandy areas. This study investigated a sympatric population of antlions and wormlions in the lowland rainforest of Borneo for substrate moisture, particle size and temperature preferences. It was hypothesised that these animals would show different preferences regarding these microhabitat traits. 2. The results showed that antlions had a higher aversion to moisture compared with wormlions, but that wormlions had a higher preference for small‐particle sand. Furthermore, thermal preferences in antlions and wormlions were significantly different, with antlions choosing higher temperatures. 3. The detected differences between antlions and wormlions might contribute to their niche partitioning in the mixed Bornean population and thus facilitate coexistence of these animals. It is possible that the hotter and dryer microhabitat edges are preferred by antlions.  相似文献   
2.
1. Starvation tolerance is an important trait for animals, as most will encounter starvation within their lifetime. Sit‐and‐wait predators are better adapted to starvation owing to their naturally low encounter rate with prey. 2. Starvation tolerance was studied under three levels of disturbance of wormlion larvae, a strict sit‐and‐wait predator that constructs pits. 3. Frequently disturbed wormlions constructed pits less often, and larger individuals continued to construct pits more frequently than smaller ones. It was expected that a high disturbance level would lead to a high rate of mass loss, however, surprisingly, the rate of mass loss was not higher for the frequently disturbed group. This suggests that the energetic cost of pit construction and maintenance is not as high as previously suggested for other pit‐building predators. 4. Larger individuals tolerated starvation better, in losing a lower proportion of their initial body mass and having higher chances of survival throughout the experiment. 5. The effect of starvation on the distance to neighbours was also investigated, and starved individuals were expected to maximise this distance in order to avoid interference competition. However, wormlions were usually clumped, and starvation or feeding had no effect on the pits' spatial pattern, suggesting that interference competition plays a minor role in this species. 6. Generally, wormlion larvae demonstrated a high starvation tolerance and low mortality rates even after 9 weeks of starvation.  相似文献   
3.
1. This study reports the discovery of sympatric populations of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) in a unique system of sandy microhabitats in the lowland rainforest of Borneo. The two species convergently evolved sit‐and‐wait predatory larvae, which construct pitfall traps to hunt insects. Despite similar specialised foraging strategies, the two species coexist in the competitive environment of small, isolated sandy patches in the rainforest, which begs the question: what biological characteristics allow their coexistence? 2. Based on larval morphology alone, it was predicted that antlions would build larger traps, which would allow them to efficiently hunt larger prey. Addressing this hypothesis, this study compared the volumes of traps constructed by the two species under field and laboratory conditions. A laboratory experiment compared their efficiency of capture of three ant species that differed in body size. 3. The results show that antlions constructed larger traps and captured prey more efficiently. The difference between the species could not be explained by trap size alone. The findings demonstrate that the overlap in resource use in these two species was low, and it is suggested that there is a separation in prey utility between them, allowing their coexistence in the space‐limited habitat of the tropical rainforest.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号