首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   5篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   14篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   10篇
  1996年   9篇
  1995年   3篇
  1994年   7篇
  1993年   3篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1989年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   
2.
Repeated measurements of food intake made on juvenile Arctic charr, Salvelinus alpinus , held under different rearing conditions enabled examination of the effects of environmental manipulations on both intra– and inter–individual variations in food intake to be made. This permitted the assessment of the influences of differential food acquisition on individual growth rates and biomass gain. When charr were held in isolation individual fish showed relatively little day–to–day variability in food intake and inter–individual differences in intake were small ('base–fine' values). All fish exhibited positive rates of growth and the overall range was narrow. Nevertheless, there was a highly significant positive correlation between food intake and growth, indicating that those individuals that consumed the greatest quantities of food were also those that had the highest rates of weight gain. The rearing of charr in groups led to increases in both intra– and inter–individual variations in food intake to levels considerably above 'base–line'. This increased variability in food intake was reflected in rates of weight gain being more variable amongst the charr reared in groups, with fish that lost weight often being recorded. Manipulation of the rearing environment had marked influences upon intra–individual variability in food intake, inter–individual differences in food acquisition and rates of weight gain. High stocking densities and exposure of the fish to moderate water currents were most effective in reducing levels of variability to approach those observed under 'base–line' conditions.  相似文献   
3.
Mangrove zooplankton of North Queensland,Australia   总被引:2,自引:2,他引:0  
McKinnon  A. D.  Klumpp  D. W. 《Hydrobiologia》1997,348(1-3):127-143
Food consumption, growth, fish length distributions,population sizes and habitat use of the salmonids intwo lakes in the Høylandet area were studied in1986–89. The allopatric brown trout (Salmotrutta L.) in the tarn Røyrtjønna (27 ha) fed mainlyon organisms at the lake surface , crustaceanplankton, Trichoptera and Chironomidae. Only 5% ofthe trout reached an age of 6 years and a length of25 cm. Sexual maturation started at age 3 and a lengthof 14 cm. Through mark – recapture technique thenumber of trout >10 cm was estimated to 115 ha-1.Growth, fish length frequencies and sexualmaturation of the sympatric brown trout and Arcticcharr (Salvelinus alpinus (L.)) in LakeStorgrønningen (530 ha) were not much different. TheStorgrønningen charr fed chiefly on zooplankton whichby volume represented 33% for the trout. The foodconsumption of Storgrønningen trout was at maximum inJuly with 2.06 mg food (d.w.) per g live fish and forcharr in September with 1.26 mg food. The maximumsize-independent growth rate of trout was 5.2%day-1 in late June, and for charr 4.1%day-1 in late July. Seventy percent of theirseasonal growth took place before 15 August. The charrstayed mainly deeper than 3-4 m, at water temperatures<15 °C. Brown trout stayed mainly the littoralzone and in near surface water of the pelagic. Thenumber of pelagic charr was estimated hydroacusticallyto 50 ind. ha-1. The charr spawn in thelake. Mean numbers of juvenile trout in the twolargest tributaries were 26 and 48 per 100 m2.Their annual length increment was 2.8–3.4 cm. Noindication of acidification or other human inducedimpacts were found. The lakes and their tributariesrepresent complex aquatic systems, representative forpristine oligotrophic Norwegian lowland lakes.John W. Jensen died shortly after easter in 1996  相似文献   
4.
The effect of ozone exposure on the activities of reactive oxygen scavenging enzymes (SOD†, catalase, GSH-Px) in RBC of Japanese charr (Salvelinus leucomaenis) was examined. Ozone (0, 0.4 and 0.7 ppm as initial concentrations) was exposed to Japanese charr for 30 min, which definitely caused serious membrane damage to RBC of fish. Ozone exposure at 0.4 and 0.7 ppm decreased activities of both catalase and GSH-Px by 80 to 57+ of the control. On the other hand, the activities of SOD remained unaffected even by 0.7 ppm ozone exposure. A hypothesis on the RBC membrane damage and participation of SOD and heme-iron was proposed.  相似文献   
5.
Genomic sequences of gonadotropin-releasing hormone genes were amplified and examined for sequence divergence among members of three different genera of the subfamily Salmoninae: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus). Sequences of GNRH3A and GNRH3B (formerly known as sGnRH1 and sGnRH2) were 97-99% similar in coding regions and 94-98% similar in non-coding regions among genera, but comparisons within species between GNRH3A and GNRH3B were only 90-92% similar in coding regions and 83-89% similar in non-coding regions. Polymorphisms in the parents of mapping families for each species allowed for linkage mapping of the GNRH3B gene in all three species and the GNRH3A gene in rainbow trout. GNRH3B maps to linkage group 6 in rainbow trout, linkage group 16 in Atlantic salmon and linkage group 25 in Arctic charr. GNRH3A mapped to linkage group 30 in rainbow trout.  相似文献   
6.
Despite geographical isolation and widespread phenotypic polymorphism, previous population genetic studies of Arctic charr, Salvelinus alpinus , have detected low levels of intra- and interpopulation variation. In this study, two approaches were used to test the generality of low genetic diversity among 15 Arctic charr populations from three major drainages of the central Alpine region of Europe. First, a representative subsample of each drainage was screened by PCR–RFLP analysis of mtDNA using 31 restriction enzymes. All individuals but one shared an identical haplotype. In contrast, microsatellite DNA variation revealed high levels of genetic diversity within and among populations. The number of alleles per locus ranged from six to 49, resulting in an overall expected heterozygosity from 0.72 ± 0.09 to 0.87 ± 0.04 depending on the locus. Despite evidence for fish transfers among Alpine charr populations over centuries, genetic diversity was substantially structured, as revealed by hierarchical Φ statistics. Eighteen per cent of total genetic variance was apportioned to substructuring among Rhône, Rhine, and Danube river systems, whereas 19% was due to partitioning among populations within each drainage. Cluster analyses corroborated these results by drainage-specific grouping of nonstocked populations, but also revealed damaging effects of stocking practices in others. However, these results suggest that long-term stocking practices did not generally alter natural genetic partitioning, and stress the importance of considering genetic diversity of Arctic charr in the Alpine region for sound management. The results also refute the general view of Arctic charr being a genetically depauperate species and show the potential usefulness of microsatellite DNAs in addressing evolutionary and conservation issues in this species.  相似文献   
7.
Hybrids between native white-spotted charr Salvelinus leucomaenis and non-native brown trout Salmo trutta were identified in streams of Hokkaido, Japan, using both appearance and genetic characters. The DNA analyses indicated that the specimens were hybrids between female S. leucomaenis and male S. trutta . Occurrence of such hybrids implies increased mating opportunities between these species in wild streams.  相似文献   
8.
An extension, including an age × length interaction, was developed for a recent model incorporating the age effect in the backcalculation of growth in length from otoliths. The interaction was demonstrated using empirical data from Arctic charr Salvelinus alpinus .  相似文献   
9.
Redd (nest) surveys for resident brook trout (Salvelinus fontinalis) were conducted annually in a mountain lake in northern New York for 11 years with multiple surveys conducted during the spawning season in eight of those years. Repeated surveys throughout the spawning season allowed us to fit an individually based parametric model and estimate the day of year on which spawning was initiated, reached its midpoint, and ended during each year. Spawning phenology was then assessed relative to (1) mean of maximum daily air temperature and (2) mean of maximum daily water temperature at the lake bottom during summer in each year using a linear model. Elevated temperatures in summer were correlated with a delay in spawning and a reduction in the total number of redds constructed. Increasing the summer mean of maximum daily air temperatures by 1 °C delayed spawning by approximately 1 week and decreased the total number of redds constructed by nearly 65. Lake spawning brook trout select redd sites based on the presence of discharging groundwater that is relatively constant in temperature within and across years, leading to relatively consistent egg incubation times. Therefore, delayed spawning is likely to delay fry emergence, which could influence emergence synchrony with prey items. This work highlights non‐lethal and sub‐lethal effects of elevated summer temperatures on native resident salmonids in aquatic environments with limited thermal refugia.  相似文献   
10.
Submerged macrophytes may play an important role as a refuge for zooplankton against predators. However, a recent study suggests that their importance depends on the trophic state of the lake. We studied the impact of fish and macrophytes on the horizontal distribution of pelagic cladocerans in 56 oligotrophic arctic Greenland lakes. In north-east and western Greenland, zooplankton was sampled in the near-shore (littoral) and central (pelagial) part of all lakes and fish were sampled with multiple mesh-sized gill nets. Macrophytes were visually estimated in the littoral. In north-east Greenland, 5 taxa of cladocerans were found, while 14 taxa were recorded in western Greenland. Daphnia pulex occurred only in fishless lakes in both northeast and western Greenland and avoided the near-shore areas in the shallow and deep lakes. Bosmina spp. and Holopedium gibberum were evenly distributed between the littoral and the pelagial in the deep and shallow fishless lakes. However, their near-shore density was lowest in the presence of fish. Macrophyte-related and benthic cladocerans concentrated either in the littoral or were evenly distributed between the littoral and the pelagial, irrespective of depth and fish presence or absence. Macrophytes had no impact on the horizontal distribution of pelagic cladocerans. Thus, it is concluded that horizontal heterogeneity of Bosmina spp. and Holopedium gibberum might be affected by the presence of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号