首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In vehicle dynamics studies, the tire behaviour plays an important role in planar motion of the vehicle. Therefore, a correct representation of tire is a necessity. This paper describes a mathematical model for wheelchair tire based on the Magic Formula model. This model is widely used to represent forces and moments between the tire and the ground; however some experimental parameters must be determined. The purpose of this work is to identify the tire parameters for the wheelchair tire model, implementing them in a dynamic model of the wheelchair. For this, we developed an experimental test rig to measure the tires parameters for the lateral dynamics of a wheelchair. This dynamic model was made using a multi-body software and the wheelchair behaviour was analysed and discussed according to the tire parameters. The result of this work is one step further towards the understanding of wheelchair dynamics.  相似文献   
2.
Independent-roller ergometers (IREs) are commonly used to simulate the behaviour of a wheelchair propelled in a straight line. They cannot, however, simulate curvilinear propulsion. To this effect, a motorised wheelchair ergometer could be used, provided that a dynamic model of the wheelchair–user system propelled on straight and curvilinear paths (WSC) is available. In this article, we present such a WSC model, its parameter identification procedure and its prediction error. Ten healthy subjects propelled an instrumented wheelchair through a controlled path. Both IRE and WSC models estimated the rear wheels' velocities based on the users' propulsive moments. On curvilinear paths, the outward wheel shows root mean square (RMS) errors of 13% in an IRE vs 8% in a WSC. The inward wheel shows RMS errors of 21% in an IRE vs 11% in a WSC. Differences between both models are highly significant (p < 0.001). A wheelchair ergometer based on this new WSC model will be more accurate than a roller ergometer when simulating wheelchair propulsion in tight environments, where many turns are necessary.  相似文献   
3.
Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI), as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA) (reflective of sweat gland metabolism), active sweat gland density (SGD), and sweat output per gland (S/G) in 7 SCI athletes and 8 able-bodied (AB) controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage) in a common exercise environment (21±1°C, 45-65% relative humidity). An independent t-test revealed lower (p<0.05) SGD (upper scapular) for SCI (22.3 ±14.8 glands · cm−2) vs. AB. (41.0 ± 8.1 glands · cm−2). However, there was no significant difference for S/G between groups. S-LA was significantly greater (p<0.05) during the second exercise stage for SCI (11.5±10.9 mmol · l−1) vs. AB (26.8±11.07 mmol · l−1). These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G) between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate.  相似文献   
4.
Objective: To develop a dental unit to accommodate both patients in wheelchairs and general patients, and to evaluate the acceptability of the new chair for patients and dentists. Design: To integrate a unit for patients in wheelchairs and a unit for general patients into a single dental unit. Results: (1) The newly developed dental unit could be used for both patients in wheelchairs and general patients and could be installed in nearly the same space as occupied by a conventional dental unit. (2) The dentists could take the home position because of the height‐adjusting and tilting mechanisms. (3) The patients could be treated with a sense of assurance because of the wheelchair immobilizer and the safety devices. (4) The dentists could perform patient treatment safely. (5) As patients did not need to be transferred from their wheelchairs, assistance was unnecessary. (6) From the questionnaires, both patients and dentists rated the newly developed dental unit favourable. Conclusions: The new dental unit for patients in wheelchairs and general patients permitted dentists to perform and patients to receive dental treatment safely and in a comfortable position. Also, as a single unit could be used for treatment of both types of patients, it required no extra space. Therefore, it has the potential to be installed in the clinics of general dental practitioners to treat both groups of patients.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号