首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19877篇
  免费   1506篇
  国内免费   2475篇
  23858篇
  2024年   66篇
  2023年   235篇
  2022年   324篇
  2021年   430篇
  2020年   560篇
  2019年   590篇
  2018年   659篇
  2017年   596篇
  2016年   614篇
  2015年   670篇
  2014年   753篇
  2013年   1134篇
  2012年   615篇
  2011年   724篇
  2010年   593篇
  2009年   900篇
  2008年   847篇
  2007年   935篇
  2006年   923篇
  2005年   844篇
  2004年   791篇
  2003年   725篇
  2002年   706篇
  2001年   595篇
  2000年   542篇
  1999年   534篇
  1998年   426篇
  1997年   449篇
  1996年   453篇
  1995年   414篇
  1994年   396篇
  1993年   384篇
  1992年   402篇
  1991年   354篇
  1990年   343篇
  1989年   334篇
  1988年   318篇
  1987年   305篇
  1986年   265篇
  1985年   323篇
  1984年   351篇
  1983年   205篇
  1982年   373篇
  1981年   269篇
  1980年   199篇
  1979年   142篇
  1978年   69篇
  1977年   79篇
  1976年   30篇
  1974年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Wang  R.Z. 《Photosynthetica》2001,39(4):569-573
The differences in net photosynthetic rate (P N), transpiration rate (E), and water use efficiency (WUE) between the vegetative and reproductive shoots of three native grass species from the grassland of northeastern China [grey-green and yellow green populations of Leymus chinensis (Trin.) Tzvel., Puccinellia tenuiflora (Griseb) Scrib & Merr, Puccinellia chinampoensis Ohwi] were compared. The two type shoots experienced similar habitats, but differed in leaf life-span and leaf area. The leaf P N and WUE for the vegetative shoots were significantly higher than those for the reproductive shoots in the grasses, while their E were remarked lower in the dry season. Relative lower leaf P N and WUE for the reproductive shoots of grassland grasses may explain the facts of lower seed production and the subordinate role of seed in the grassland renewal in north-eastern China.  相似文献   
2.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
3.
4.
The complete steady-state I–V relationship of α-aminoisobutyric acid transport across the plasmalemma of rhizoid cells from Riccia fluitans has been measured and analysed with special emphasis on α-aminoisobutyric acid equilibrium and saturation conditions. (A) The electrical data show that: (1) the amino acid-induced electrical current saturates after the addition of the amino acid, regardless of the concentration; (2) a steady state is reached 1–2 h after incubation in α-aminoisobutyric acid, but after less that 5 min in the presence of 1 mM CN; (3) the steady-state I–V characteristic of α-aminoisobutyric acid transport is a sigmoid curve and fairly symmetric in current with respect to the voltage axis; and (4) the equilibrium potential is clearly a function of the amino acid accumulation ratio. It is suggested that the sigmoid curve represents the characteristic of carrier-mediated α-aminoisobutyric acid transport with a voltage-insensitive step, possibly the translocation of the unloaded carrier, rate-limiting. Since under normal conditions the voltage-sensitive rate constant koi is much greater than kio, it is further suggested that the energy to drive this system is put into the transfer of positive charge from outside to the cytoplasm. (B) Accumulation ratios have been determined by inspection of current-voltage data, and additionally by compartmental analysis on green thalli from Riccia fluitans. Both methods give ratios far too low compared with the thermodynamically possible accumulation of about 104. It is suggested that substantial leakages via different non-electrical pathways prevent equilibrium at steady state, and it is concluded that in such leaky systems the thermodynamic equilibrium condition is not suitable for estimating stoichiometries.  相似文献   
5.
Abstract. Soil resource availability may affect plant regeneration by resprouting in disturbed environments directly, by affecting plant growth rates, or indirectly by determining allocation to storage in the resprouting organs. Allocation to storage may be higher in stressful, low resource‐supply soils, but under such conditions plant growth rates may be lower. These factors could act in opposite directions leading to poorly known effects on resprouting. This paper analyses the role played by soil resources in the production and growth of resprouts after removal of above‐ground plant tissues in the Mediterranean shrub Erica australis. At 13 sites, differing in substrate, we cut the base of the stems of six plants of E. australis and allowed them to resprout and grow for two years. Soils were chemically analysed and plant water potential measured during the summer at all sites to characterize soil resource availability. We used stepwise regression analysis to determine the relationships between the resprouting response [mean site values of the number of resprouts (RN), maximum length (RML) and biomass (RB)] and soil nutrient content and plant water potential at each site. During the first two years of resprouting there were statistically significant differences among sites in the variables characterizing the resprouting response. RML was always different among sites and had little relationship with lignotuber area. RN was less different among sites and was always positively correlated with lignotuber area. RB was different among sites after the two years of growth. During the first months of resprouting, RN and RML were highly and positively related to the water status of the plant during summer. At later dates soil fertility variables came into play, explaining significant amounts of variance of the resprouting variables. Soil extractable cations content was the main variable accounting for RML and RB. Our results indicate that resprout growth of E. australis is positively affected by high water availability at the beginning of the resprouting response and negatively so by high soil extractable cation content at later periods. Some of these factors had previously shown to be related, with an opposite sign, to the development of a relatively larger lignotuber. Indeed, RML and RB measured in the second year of resprouting were significantly and negatively correlated with some indices of biomass allocation to the lignotuber at each site. This indicates that sites favouring allocation to the resprouting organ may not favour resprout growth.  相似文献   
6.
Summary Bacteria from recreational waters collected from two Lake Erie beaches in Dunkirk, New York were plated onto m Endo LES media. The 16S rRNA gene was then amplified from coliform and non-coliform bacteria using the polymerase chain reaction. The PCR products were characterized by restriction fragment length polymorphism (RFLP) analysis. A total of 8 RFLP groups were identified from the analysis of 920 samples and selected PCR products from each group were sequenced. The DNA sequence analysis indicated that more than half of the bacteria identified as coliforms on the m Endo plates belonged to the genus Aeromonas from the family Aeromonadaceae. Most of the remaining coliforms were from the Enterobacteriaceae. The data indicate that m Endo agar plates allow the growth of non-coliform bacteria, especially Aeromonas species.  相似文献   
7.
8.
Eight pilot-scale in-line filtration trials were performed to evaluate the passage of cyanobacterial cells through drinking water filters after sudden increases in hydraulic loading rates. Trials were performed at 30 °C using two coagulant combinations (aluminum sulfate and cationic polymer or ferric chloride and cationic polymer), two initial filter loading rates (7 or 10 m/h) and two species of morphologically different cyanobacteria (Microcystis aeruginosa or Anabaena flos aquae). The filter was perturbed by instantaneously increasing the hydraulic loading rate by 50%. Filter influent and effluent water qualities were characterized by measuring turbidity, particles and chlorophyll a. The observed post-perturbation filter effluent chlorophyll a peaks were 1.6–48 times greater than the pre-perturbation averages. Chlorophyll a peaks were larger for M. aeruginosa than for A. flos aquae. Chlorophyll a peaks were also larger for the higher (10 m/h) than for the lower (7 m/h) initial filter loading rate. The post-perturbation effluent turbidity peaks were 1.4–7.2 times greater than the pre-perturbation averages. The post-perturbation effluent particle peaks were 6.5–25 times greater than the pre-perturbation averages. These results indicate that particles were a more sensitive indicator of cyanobacterial passage than turbidity.  相似文献   
9.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
10.
This study was designed to determine if the known decrease in slow axonal transport of proteins in the sciatic nerve of experimentally diabetic rats is related to altered phosphorylation of neurofilament proteins (NFPs). Rats were rendered diabetic with 50 mg/kg of streptozotocin, i.p. At 3 and 6 weeks later, NFPs were prepared from spinal cord. The in vivo phosphorylation state of NFPs was examined by using phosphate-dependent (RT97) and -independent (RMd09) antibodies against high-molecular-mass NFPs on Western blots. Neurofilament-associated kinase activity was also measured in vitro by incubation of NFPs with [32P]ATP. Phosphorylation of all three NFPs (high, medium, and low molecular mass) occurred, as confirmed by gel electrophoresis and autoradiography. At 30 min of incubation, protein-bound radioactivity in NFPs from diabetic animals was reduced to 86.7 +/- 3.4 and 54.3 +/- 19.6% of that in nondiabetic animals at 3 and 6 weeks of diabetes, respectively (p less than 0.001 and p less than 0.05, respectively). NFPs were also incubated with acid phosphatase and rephosphorylated. Results showed that the increased in vivo phosphorylation contributed to the decreased in vitro phosphorylation. Extraction of protein kinases and addition back to the NFPs revealed, in addition, a reduced activity in the diabetic animals of the protein kinases measured in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号